Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioorrnopnxrlem Structured version   Visualization version   GIF version

Theorem ioorrnopnxrlem 40526
Description: Given a point 𝐹 that belongs to an indexed product of (possibly unbounded) open intervals, then 𝐹 belongs to an open product of bounded open intervals that's a subset of the original indexed product. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ioorrnopnxrlem.x (𝜑𝑋 ∈ Fin)
ioorrnopnxrlem.a (𝜑𝐴:𝑋⟶ℝ*)
ioorrnopnxrlem.b (𝜑𝐵:𝑋⟶ℝ*)
ioorrnopnxrlem.f (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
ioorrnopnxrlem.l 𝐿 = (𝑖𝑋 ↦ if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
ioorrnopnxrlem.r 𝑅 = (𝑖𝑋 ↦ if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)))
ioorrnopnxrlem.v 𝑉 = X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖))
Assertion
Ref Expression
ioorrnopnxrlem (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵   𝑖,𝐹,𝑣   𝑖,𝐿   𝑅,𝑖   𝑣,𝑉   𝑖,𝑋,𝑣   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑣)   𝐴(𝑖)   𝐵(𝑖)   𝑅(𝑣)   𝐿(𝑣)   𝑉(𝑖)

Proof of Theorem ioorrnopnxrlem
StepHypRef Expression
1 ioorrnopnxrlem.v . . . 4 𝑉 = X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖))
21a1i 11 . . 3 (𝜑𝑉 = X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)))
3 ioorrnopnxrlem.x . . . 4 (𝜑𝑋 ∈ Fin)
4 iftrue 4092 . . . . . . . 8 ((𝐴𝑖) = -∞ → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) = ((𝐹𝑖) − 1))
54adantl 482 . . . . . . 7 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) = ((𝐹𝑖) − 1))
6 ioorrnopnxrlem.f . . . . . . . . . . . 12 (𝜑𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
76adantr 481 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → 𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
8 simpr 477 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → 𝑖𝑋)
9 fvixp2 39389 . . . . . . . . . . 11 ((𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ∧ 𝑖𝑋) → (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
107, 8, 9syl2anc 693 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖)))
1110elioored 39776 . . . . . . . . 9 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ℝ)
12 1red 10055 . . . . . . . . 9 ((𝜑𝑖𝑋) → 1 ∈ ℝ)
1311, 12resubcld 10458 . . . . . . . 8 ((𝜑𝑖𝑋) → ((𝐹𝑖) − 1) ∈ ℝ)
1413adantr 481 . . . . . . 7 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → ((𝐹𝑖) − 1) ∈ ℝ)
155, 14eqeltrd 2701 . . . . . 6 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) ∈ ℝ)
16 iffalse 4095 . . . . . . . 8 (¬ (𝐴𝑖) = -∞ → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) = (𝐴𝑖))
1716adantl 482 . . . . . . 7 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) = (𝐴𝑖))
18 neqne 2802 . . . . . . . . 9 (¬ (𝐴𝑖) = -∞ → (𝐴𝑖) ≠ -∞)
1918adantl 482 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐴𝑖) ≠ -∞)
20 ioorrnopnxrlem.a . . . . . . . . . . 11 (𝜑𝐴:𝑋⟶ℝ*)
2120ffvelrnda 6359 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
2221adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) ≠ -∞) → (𝐴𝑖) ∈ ℝ*)
23 simpr 477 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) ≠ -∞) → (𝐴𝑖) ≠ -∞)
24 pnfxr 10092 . . . . . . . . . . . 12 +∞ ∈ ℝ*
2524a1i 11 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → +∞ ∈ ℝ*)
2611rexrd 10089 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ℝ*)
27 ioorrnopnxrlem.b . . . . . . . . . . . . . 14 (𝜑𝐵:𝑋⟶ℝ*)
2827ffvelrnda 6359 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
29 ioogtlb 39717 . . . . . . . . . . . . 13 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))) → (𝐴𝑖) < (𝐹𝑖))
3021, 28, 10, 29syl3anc 1326 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐴𝑖) < (𝐹𝑖))
3111ltpnfd 11955 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐹𝑖) < +∞)
3221, 26, 25, 30, 31xrlttrd 11990 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐴𝑖) < +∞)
3321, 25, 32xrltned 39573 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐴𝑖) ≠ +∞)
3433adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) ≠ -∞) → (𝐴𝑖) ≠ +∞)
3522, 23, 34xrred 39581 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) ≠ -∞) → (𝐴𝑖) ∈ ℝ)
3619, 35syldan 487 . . . . . . 7 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐴𝑖) ∈ ℝ)
3717, 36eqeltrd 2701 . . . . . 6 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) ∈ ℝ)
3815, 37pm2.61dan 832 . . . . 5 ((𝜑𝑖𝑋) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) ∈ ℝ)
39 ioorrnopnxrlem.l . . . . 5 𝐿 = (𝑖𝑋 ↦ if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
4038, 39fmptd 6385 . . . 4 (𝜑𝐿:𝑋⟶ℝ)
41 iftrue 4092 . . . . . . . 8 ((𝐵𝑖) = +∞ → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) = ((𝐹𝑖) + 1))
4241adantl 482 . . . . . . 7 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) = ((𝐹𝑖) + 1))
4311, 12readdcld 10069 . . . . . . . 8 ((𝜑𝑖𝑋) → ((𝐹𝑖) + 1) ∈ ℝ)
4443adantr 481 . . . . . . 7 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → ((𝐹𝑖) + 1) ∈ ℝ)
4542, 44eqeltrd 2701 . . . . . 6 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) ∈ ℝ)
46 iffalse 4095 . . . . . . . 8 (¬ (𝐵𝑖) = +∞ → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) = (𝐵𝑖))
4746adantl 482 . . . . . . 7 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) = (𝐵𝑖))
48 neqne 2802 . . . . . . . . 9 (¬ (𝐵𝑖) = +∞ → (𝐵𝑖) ≠ +∞)
4948adantl 482 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝐵𝑖) ≠ +∞)
5028adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) ≠ +∞) → (𝐵𝑖) ∈ ℝ*)
51 mnfxr 10096 . . . . . . . . . . . 12 -∞ ∈ ℝ*
5251a1i 11 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → -∞ ∈ ℝ*)
5311mnfltd 11958 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → -∞ < (𝐹𝑖))
54 iooltub 39735 . . . . . . . . . . . . 13 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝐹𝑖) ∈ ((𝐴𝑖)(,)(𝐵𝑖))) → (𝐹𝑖) < (𝐵𝑖))
5521, 28, 10, 54syl3anc 1326 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐹𝑖) < (𝐵𝑖))
5652, 26, 28, 53, 55xrlttrd 11990 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → -∞ < (𝐵𝑖))
5752, 28, 56xrgtned 39538 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝐵𝑖) ≠ -∞)
5857adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) ≠ +∞) → (𝐵𝑖) ≠ -∞)
59 simpr 477 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) ≠ +∞) → (𝐵𝑖) ≠ +∞)
6050, 58, 59xrred 39581 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) ≠ +∞) → (𝐵𝑖) ∈ ℝ)
6149, 60syldan 487 . . . . . . 7 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝐵𝑖) ∈ ℝ)
6247, 61eqeltrd 2701 . . . . . 6 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) ∈ ℝ)
6345, 62pm2.61dan 832 . . . . 5 ((𝜑𝑖𝑋) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) ∈ ℝ)
64 ioorrnopnxrlem.r . . . . 5 𝑅 = (𝑖𝑋 ↦ if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)))
6563, 64fmptd 6385 . . . 4 (𝜑𝑅:𝑋⟶ℝ)
663, 40, 65ioorrnopn 40525 . . 3 (𝜑X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ∈ (TopOpen‘(ℝ^‘𝑋)))
672, 66eqeltrd 2701 . 2 (𝜑𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)))
686elexd 3214 . . . . . 6 (𝜑𝐹 ∈ V)
69 ixpfn 7914 . . . . . . 7 (𝐹X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) → 𝐹 Fn 𝑋)
706, 69syl 17 . . . . . 6 (𝜑𝐹 Fn 𝑋)
7140ffvelrnda 6359 . . . . . . . . 9 ((𝜑𝑖𝑋) → (𝐿𝑖) ∈ ℝ)
7271rexrd 10089 . . . . . . . 8 ((𝜑𝑖𝑋) → (𝐿𝑖) ∈ ℝ*)
7365ffvelrnda 6359 . . . . . . . . 9 ((𝜑𝑖𝑋) → (𝑅𝑖) ∈ ℝ)
7473rexrd 10089 . . . . . . . 8 ((𝜑𝑖𝑋) → (𝑅𝑖) ∈ ℝ*)
7539a1i 11 . . . . . . . . . . . . 13 (𝜑𝐿 = (𝑖𝑋 ↦ if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖))))
7638elexd 3214 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)) ∈ V)
7775, 76fvmpt2d 6293 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐿𝑖) = if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
7877adantr 481 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐿𝑖) = if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
7978, 5eqtrd 2656 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐿𝑖) = ((𝐹𝑖) − 1))
8011ltm1d 10956 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝐹𝑖) − 1) < (𝐹𝑖))
8180adantr 481 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → ((𝐹𝑖) − 1) < (𝐹𝑖))
8279, 81eqbrtrd 4675 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐿𝑖) < (𝐹𝑖))
8377adantr 481 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐿𝑖) = if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
8483, 17eqtrd 2656 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐿𝑖) = (𝐴𝑖))
8530adantr 481 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐴𝑖) < (𝐹𝑖))
8684, 85eqbrtrd 4675 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐿𝑖) < (𝐹𝑖))
8782, 86pm2.61dan 832 . . . . . . . 8 ((𝜑𝑖𝑋) → (𝐿𝑖) < (𝐹𝑖))
8811ltp1d 10954 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐹𝑖) < ((𝐹𝑖) + 1))
8988adantr 481 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝐹𝑖) < ((𝐹𝑖) + 1))
9064a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑅 = (𝑖𝑋 ↦ if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖))))
9163elexd 3214 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)) ∈ V)
9290, 91fvmpt2d 6293 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝑅𝑖) = if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)))
9392adantr 481 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝑅𝑖) = if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)))
9493, 42eqtrd 2656 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝑅𝑖) = ((𝐹𝑖) + 1))
9594eqcomd 2628 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → ((𝐹𝑖) + 1) = (𝑅𝑖))
9689, 95breqtrd 4679 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝐹𝑖) < (𝑅𝑖))
9755adantr 481 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝐹𝑖) < (𝐵𝑖))
9892adantr 481 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝑅𝑖) = if((𝐵𝑖) = +∞, ((𝐹𝑖) + 1), (𝐵𝑖)))
9998, 47eqtrd 2656 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝑅𝑖) = (𝐵𝑖))
10099eqcomd 2628 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝐵𝑖) = (𝑅𝑖))
10197, 100breqtrd 4679 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝐹𝑖) < (𝑅𝑖))
10296, 101pm2.61dan 832 . . . . . . . 8 ((𝜑𝑖𝑋) → (𝐹𝑖) < (𝑅𝑖))
10372, 74, 11, 87, 102eliood 39720 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐹𝑖) ∈ ((𝐿𝑖)(,)(𝑅𝑖)))
104103ralrimiva 2966 . . . . . 6 (𝜑 → ∀𝑖𝑋 (𝐹𝑖) ∈ ((𝐿𝑖)(,)(𝑅𝑖)))
10568, 70, 1043jca 1242 . . . . 5 (𝜑 → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑖𝑋 (𝐹𝑖) ∈ ((𝐿𝑖)(,)(𝑅𝑖))))
106 elixp2 7912 . . . . 5 (𝐹X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑖𝑋 (𝐹𝑖) ∈ ((𝐿𝑖)(,)(𝑅𝑖))))
107105, 106sylibr 224 . . . 4 (𝜑𝐹X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)))
108107, 1syl6eleqr 2712 . . 3 (𝜑𝐹𝑉)
10921adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐴𝑖) ∈ ℝ*)
11072adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐿𝑖) ∈ ℝ*)
11115mnfltd 11958 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → -∞ < if((𝐴𝑖) = -∞, ((𝐹𝑖) − 1), (𝐴𝑖)))
112111, 5breqtrd 4679 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → -∞ < ((𝐹𝑖) − 1))
113 simpr 477 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐴𝑖) = -∞)
114113, 79breq12d 4666 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → ((𝐴𝑖) < (𝐿𝑖) ↔ -∞ < ((𝐹𝑖) − 1)))
115112, 114mpbird 247 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐴𝑖) < (𝐿𝑖))
116109, 110, 115xrltled 39486 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ (𝐴𝑖) = -∞) → (𝐴𝑖) ≤ (𝐿𝑖))
11784eqcomd 2628 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐴𝑖) = (𝐿𝑖))
11836, 117eqled 10140 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ ¬ (𝐴𝑖) = -∞) → (𝐴𝑖) ≤ (𝐿𝑖))
119116, 118pm2.61dan 832 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐴𝑖) ≤ (𝐿𝑖))
12074adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝑅𝑖) ∈ ℝ*)
12128adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝐵𝑖) ∈ ℝ*)
12244ltpnfd 11955 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → ((𝐹𝑖) + 1) < +∞)
123 simpr 477 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝐵𝑖) = +∞)
12494, 123breq12d 4666 . . . . . . . . . 10 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → ((𝑅𝑖) < (𝐵𝑖) ↔ ((𝐹𝑖) + 1) < +∞))
125122, 124mpbird 247 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝑅𝑖) < (𝐵𝑖))
126120, 121, 125xrltled 39486 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ (𝐵𝑖) = +∞) → (𝑅𝑖) ≤ (𝐵𝑖))
12773adantr 481 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝑅𝑖) ∈ ℝ)
128127, 99eqled 10140 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ ¬ (𝐵𝑖) = +∞) → (𝑅𝑖) ≤ (𝐵𝑖))
129126, 128pm2.61dan 832 . . . . . . 7 ((𝜑𝑖𝑋) → (𝑅𝑖) ≤ (𝐵𝑖))
130 ioossioo 12265 . . . . . . 7 ((((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ*) ∧ ((𝐴𝑖) ≤ (𝐿𝑖) ∧ (𝑅𝑖) ≤ (𝐵𝑖))) → ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ ((𝐴𝑖)(,)(𝐵𝑖)))
13121, 28, 119, 129, 130syl22anc 1327 . . . . . 6 ((𝜑𝑖𝑋) → ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ ((𝐴𝑖)(,)(𝐵𝑖)))
132131ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ ((𝐴𝑖)(,)(𝐵𝑖)))
133 ss2ixp 7921 . . . . 5 (∀𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ ((𝐴𝑖)(,)(𝐵𝑖)) → X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
134132, 133syl 17 . . . 4 (𝜑X𝑖𝑋 ((𝐿𝑖)(,)(𝑅𝑖)) ⊆ X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
1352, 134eqsstrd 3639 . . 3 (𝜑𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))
136108, 135jca 554 . 2 (𝜑 → (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
137 eleq2 2690 . . . 4 (𝑣 = 𝑉 → (𝐹𝑣𝐹𝑉))
138 sseq1 3626 . . . 4 (𝑣 = 𝑉 → (𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)) ↔ 𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
139137, 138anbi12d 747 . . 3 (𝑣 = 𝑉 → ((𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))) ↔ (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))))
140139rspcev 3309 . 2 ((𝑉 ∈ (TopOpen‘(ℝ^‘𝑋)) ∧ (𝐹𝑉𝑉X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖)))) → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
14167, 136, 140syl2anc 693 1 (𝜑 → ∃𝑣 ∈ (TopOpen‘(ℝ^‘𝑋))(𝐹𝑣𝑣X𝑖𝑋 ((𝐴𝑖)(,)(𝐵𝑖))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Xcixp 7908  Fincfn 7955  cr 9935  1c1 9937   + caddc 9939  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  cmin 10266  (,)cioo 12175  TopOpenctopn 16082  ℝ^crrx 23171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-abv 18817  df-staf 18845  df-srng 18846  df-lmod 18865  df-lss 18933  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-refld 19951  df-phl 19971  df-dsmm 20076  df-frlm 20091  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-tng 22389  df-nrg 22390  df-nlm 22391  df-clm 22863  df-cph 22968  df-tch 22969  df-rrx 23173
This theorem is referenced by:  ioorrnopnxr  40527
  Copyright terms: Public domain W3C validator