MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsplitioo Structured version   Visualization version   GIF version

Theorem itgsplitioo 23604
Description: The integral splits on open intervals with matching endpoints. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgsplitioo.1 (𝜑𝐴 ∈ ℝ)
itgsplitioo.2 (𝜑𝐶 ∈ ℝ)
itgsplitioo.3 (𝜑𝐵 ∈ (𝐴[,]𝐶))
itgsplitioo.4 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
itgsplitioo.5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
itgsplitioo.6 (𝜑 → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
Assertion
Ref Expression
itgsplitioo (𝜑 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem itgsplitioo
StepHypRef Expression
1 itgsplitioo.3 . . . . . . 7 (𝜑𝐵 ∈ (𝐴[,]𝐶))
2 itgsplitioo.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3 itgsplitioo.2 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
4 elicc2 12238 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
52, 3, 4syl2anc 693 . . . . . . 7 (𝜑 → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
61, 5mpbid 222 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶))
76simp2d 1074 . . . . 5 (𝜑𝐴𝐵)
86simp1d 1073 . . . . . 6 (𝜑𝐵 ∈ ℝ)
92, 8leloed 10180 . . . . 5 (𝜑 → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
107, 9mpbid 222 . . . 4 (𝜑 → (𝐴 < 𝐵𝐴 = 𝐵))
1110ord 392 . . 3 (𝜑 → (¬ 𝐴 < 𝐵𝐴 = 𝐵))
122rexrd 10089 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
13 iooss1 12210 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶))
1412, 7, 13syl2anc 693 . . . . . . . . 9 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶))
1514sselda 3603 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐴(,)𝐶))
16 itgsplitioo.4 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
1715, 16syldan 487 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝐷 ∈ ℂ)
18 itgsplitioo.6 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
1917, 18itgcl 23550 . . . . . 6 (𝜑 → ∫(𝐵(,)𝐶)𝐷 d𝑥 ∈ ℂ)
2019addid2d 10237 . . . . 5 (𝜑 → (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥) = ∫(𝐵(,)𝐶)𝐷 d𝑥)
2120eqcomd 2628 . . . 4 (𝜑 → ∫(𝐵(,)𝐶)𝐷 d𝑥 = (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
22 oveq1 6657 . . . . . 6 (𝐴 = 𝐵 → (𝐴(,)𝐶) = (𝐵(,)𝐶))
23 itgeq1 23539 . . . . . 6 ((𝐴(,)𝐶) = (𝐵(,)𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
2422, 23syl 17 . . . . 5 (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
25 oveq1 6657 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴(,)𝐵) = (𝐵(,)𝐵))
26 iooid 12203 . . . . . . . . 9 (𝐵(,)𝐵) = ∅
2725, 26syl6eq 2672 . . . . . . . 8 (𝐴 = 𝐵 → (𝐴(,)𝐵) = ∅)
28 itgeq1 23539 . . . . . . . 8 ((𝐴(,)𝐵) = ∅ → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫∅𝐷 d𝑥)
2927, 28syl 17 . . . . . . 7 (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫∅𝐷 d𝑥)
30 itg0 23546 . . . . . . 7 ∫∅𝐷 d𝑥 = 0
3129, 30syl6eq 2672 . . . . . 6 (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = 0)
3231oveq1d 6665 . . . . 5 (𝐴 = 𝐵 → (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥) = (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
3324, 32eqeq12d 2637 . . . 4 (𝐴 = 𝐵 → (∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥) ↔ ∫(𝐵(,)𝐶)𝐷 d𝑥 = (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
3421, 33syl5ibrcom 237 . . 3 (𝜑 → (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
3511, 34syld 47 . 2 (𝜑 → (¬ 𝐴 < 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
366simp3d 1075 . . . . 5 (𝜑𝐵𝐶)
378, 3leloed 10180 . . . . 5 (𝜑 → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
3836, 37mpbid 222 . . . 4 (𝜑 → (𝐵 < 𝐶𝐵 = 𝐶))
3938ord 392 . . 3 (𝜑 → (¬ 𝐵 < 𝐶𝐵 = 𝐶))
403rexrd 10089 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ*)
41 iooss2 12211 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐵𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶))
4240, 36, 41syl2anc 693 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶))
4342sselda 3603 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐶))
4443, 16syldan 487 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐷 ∈ ℂ)
45 itgsplitioo.5 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
4644, 45itgcl 23550 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)𝐷 d𝑥 ∈ ℂ)
4746addid1d 10236 . . . . 5 (𝜑 → (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0) = ∫(𝐴(,)𝐵)𝐷 d𝑥)
4847eqcomd 2628 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0))
49 oveq2 6658 . . . . . 6 (𝐵 = 𝐶 → (𝐴(,)𝐵) = (𝐴(,)𝐶))
50 itgeq1 23539 . . . . . 6 ((𝐴(,)𝐵) = (𝐴(,)𝐶) → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐶)𝐷 d𝑥)
5149, 50syl 17 . . . . 5 (𝐵 = 𝐶 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐶)𝐷 d𝑥)
52 oveq2 6658 . . . . . . . . 9 (𝐵 = 𝐶 → (𝐵(,)𝐵) = (𝐵(,)𝐶))
5326, 52syl5eqr 2670 . . . . . . . 8 (𝐵 = 𝐶 → ∅ = (𝐵(,)𝐶))
54 itgeq1 23539 . . . . . . . 8 (∅ = (𝐵(,)𝐶) → ∫∅𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5553, 54syl 17 . . . . . . 7 (𝐵 = 𝐶 → ∫∅𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5630, 55syl5eqr 2670 . . . . . 6 (𝐵 = 𝐶 → 0 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5756oveq2d 6666 . . . . 5 (𝐵 = 𝐶 → (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0) = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
5851, 57eqeq12d 2637 . . . 4 (𝐵 = 𝐶 → (∫(𝐴(,)𝐵)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0) ↔ ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
5948, 58syl5ibcom 235 . . 3 (𝜑 → (𝐵 = 𝐶 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
6039, 59syld 47 . 2 (𝜑 → (¬ 𝐵 < 𝐶 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
61 indir 3875 . . . . . . . 8 (((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶)) = (((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) ∪ ({𝐵} ∩ (𝐵(,)𝐶)))
628rexrd 10089 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
6312, 62jca 554 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
6463adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
6562, 40jca 554 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
6665adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
678adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ)
6867leidd 10594 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵𝐵)
69 ioodisj 12302 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*)) ∧ 𝐵𝐵) → ((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) = ∅)
7064, 66, 68, 69syl21anc 1325 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) = ∅)
71 incom 3805 . . . . . . . . . . 11 ({𝐵} ∩ (𝐵(,)𝐶)) = ((𝐵(,)𝐶) ∩ {𝐵})
7267ltnrd 10171 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ¬ 𝐵 < 𝐵)
73 eliooord 12233 . . . . . . . . . . . . . 14 (𝐵 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐵𝐵 < 𝐶))
7473simpld 475 . . . . . . . . . . . . 13 (𝐵 ∈ (𝐵(,)𝐶) → 𝐵 < 𝐵)
7572, 74nsyl 135 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ¬ 𝐵 ∈ (𝐵(,)𝐶))
76 disjsn 4246 . . . . . . . . . . . 12 (((𝐵(,)𝐶) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (𝐵(,)𝐶))
7775, 76sylibr 224 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐵(,)𝐶) ∩ {𝐵}) = ∅)
7871, 77syl5eq 2668 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ({𝐵} ∩ (𝐵(,)𝐶)) = ∅)
7970, 78uneq12d 3768 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) ∪ ({𝐵} ∩ (𝐵(,)𝐶))) = (∅ ∪ ∅))
80 un0 3967 . . . . . . . . 9 (∅ ∪ ∅) = ∅
8179, 80syl6eq 2672 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) ∪ ({𝐵} ∩ (𝐵(,)𝐶))) = ∅)
8261, 81syl5eq 2668 . . . . . . 7 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶)) = ∅)
8382fveq2d 6195 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶))) = (vol*‘∅))
84 ovol0 23261 . . . . . 6 (vol*‘∅) = 0
8583, 84syl6eq 2672 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶))) = 0)
8612, 62, 403jca 1242 . . . . . . 7 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
87 ioojoin 12303 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶))
8886, 87sylan 488 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶))
8988eqcomd 2628 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴(,)𝐶) = (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)))
9016adantlr 751 . . . . 5 (((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) ∧ 𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
9145adantr 481 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
92 ssun1 3776 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ {𝐵})
9392a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ {𝐵}))
94 ioossre 12235 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℝ
9594a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴(,)𝐵) ⊆ ℝ)
9667snssd 4340 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → {𝐵} ⊆ ℝ)
9795, 96unssd 3789 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ)
98 uncom 3757 . . . . . . . . . . . . 13 ((𝐴(,)𝐵) ∪ {𝐵}) = ({𝐵} ∪ (𝐴(,)𝐵))
9998difeq1i 3724 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) = (({𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵))
100 difun2 4048 . . . . . . . . . . . 12 (({𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)) = ({𝐵} ∖ (𝐴(,)𝐵))
10199, 100eqtri 2644 . . . . . . . . . . 11 (((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) = ({𝐵} ∖ (𝐴(,)𝐵))
102 difss 3737 . . . . . . . . . . 11 ({𝐵} ∖ (𝐴(,)𝐵)) ⊆ {𝐵}
103101, 102eqsstri 3635 . . . . . . . . . 10 (((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) ⊆ {𝐵}
104103a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) ⊆ {𝐵})
105 ovolsn 23263 . . . . . . . . . 10 (𝐵 ∈ ℝ → (vol*‘{𝐵}) = 0)
10667, 105syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘{𝐵}) = 0)
107 ovolssnul 23255 . . . . . . . . 9 (((((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) ⊆ {𝐵} ∧ {𝐵} ⊆ ℝ ∧ (vol*‘{𝐵}) = 0) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵))) = 0)
108104, 96, 106, 107syl3anc 1326 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵))) = 0)
109 ssun1 3776 . . . . . . . . . . 11 ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶))
110109, 88syl5sseq 3653 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ (𝐴(,)𝐶))
111110sselda 3603 . . . . . . . . 9 (((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) ∧ 𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵})) → 𝑥 ∈ (𝐴(,)𝐶))
112111, 90syldan 487 . . . . . . . 8 (((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) ∧ 𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵})) → 𝐷 ∈ ℂ)
11393, 97, 108, 112itgss3 23581 . . . . . . 7 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1 ↔ (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵}) ↦ 𝐷) ∈ 𝐿1) ∧ ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥))
114113simpld 475 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1 ↔ (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵}) ↦ 𝐷) ∈ 𝐿1))
11591, 114mpbid 222 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵}) ↦ 𝐷) ∈ 𝐿1)
11618adantr 481 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
11785, 89, 90, 115, 116itgsplit 23602 . . . 4 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
118113simprd 479 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥)
119118oveq1d 6665 . . . 4 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥) = (∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
120117, 119eqtr4d 2659 . . 3 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
121120ex 450 . 2 (𝜑 → ((𝐴 < 𝐵𝐵 < 𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
12235, 60, 121ecased 985 1 (𝜑 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  (,)cioo 12175  [,]cicc 12178  vol*covol 23231  𝐿1cibl 23386  citg 23387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437
This theorem is referenced by:  ditgsplitlem  23624  ftc1lem1  23798  ftc1anc  33493  fourierdlem103  40426  fourierdlem104  40427  fourierdlem111  40434  sqwvfoura  40445  sqwvfourb  40446
  Copyright terms: Public domain W3C validator