Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepsnlinclem1 Structured version   Visualization version   GIF version

Theorem ldepsnlinclem1 42294
Description: Lemma 1 for ldepsnlinc 42297. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
Assertion
Ref Expression
ldepsnlinclem1 (𝐹 ∈ ((Base‘ℤring) ↑𝑚 {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴)

Proof of Theorem ldepsnlinclem1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elmapi 7879 . 2 (𝐹 ∈ ((Base‘ℤring) ↑𝑚 {𝐵}) → 𝐹:{𝐵}⟶(Base‘ℤring))
2 zlmodzxzldep.b . . . . 5 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
3 prex 4909 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
42, 3eqeltri 2697 . . . 4 𝐵 ∈ V
54fsn2 6403 . . 3 (𝐹:{𝐵}⟶(Base‘ℤring) ↔ ((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}))
6 oveq1 6657 . . . . . 6 (𝐹 = {⟨𝐵, (𝐹𝐵)⟩} → (𝐹( linC ‘𝑍){𝐵}) = ({⟨𝐵, (𝐹𝐵)⟩} ( linC ‘𝑍){𝐵}))
76adantl 482 . . . . 5 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹( linC ‘𝑍){𝐵}) = ({⟨𝐵, (𝐹𝐵)⟩} ( linC ‘𝑍){𝐵}))
8 zlmodzxzldep.z . . . . . . . . 9 𝑍 = (ℤring freeLMod {0, 1})
98zlmodzxzlmod 42132 . . . . . . . 8 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
109simpli 474 . . . . . . 7 𝑍 ∈ LMod
1110a1i 11 . . . . . 6 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → 𝑍 ∈ LMod)
12 2z 11409 . . . . . . . . 9 2 ∈ ℤ
13 4z 11411 . . . . . . . . 9 4 ∈ ℤ
148zlmodzxzel 42133 . . . . . . . . 9 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍))
1512, 13, 14mp2an 708 . . . . . . . 8 {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍)
162, 15eqeltri 2697 . . . . . . 7 𝐵 ∈ (Base‘𝑍)
1716a1i 11 . . . . . 6 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → 𝐵 ∈ (Base‘𝑍))
18 simpl 473 . . . . . 6 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹𝐵) ∈ (Base‘ℤring))
19 eqid 2622 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
209simpri 478 . . . . . . 7 ring = (Scalar‘𝑍)
21 eqid 2622 . . . . . . 7 (Base‘ℤring) = (Base‘ℤring)
22 eqid 2622 . . . . . . 7 ( ·𝑠𝑍) = ( ·𝑠𝑍)
2319, 20, 21, 22lincvalsng 42205 . . . . . 6 ((𝑍 ∈ LMod ∧ 𝐵 ∈ (Base‘𝑍) ∧ (𝐹𝐵) ∈ (Base‘ℤring)) → ({⟨𝐵, (𝐹𝐵)⟩} ( linC ‘𝑍){𝐵}) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
2411, 17, 18, 23syl3anc 1326 . . . . 5 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ({⟨𝐵, (𝐹𝐵)⟩} ( linC ‘𝑍){𝐵}) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
257, 24eqtrd 2656 . . . 4 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹( linC ‘𝑍){𝐵}) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
26 eqid 2622 . . . . . 6 {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
27 eqid 2622 . . . . . 6 (-g𝑍) = (-g𝑍)
28 zlmodzxzldep.a . . . . . 6 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
298, 26, 22, 27, 28, 2zlmodzxznm 42286 . . . . 5 𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴)
30 r19.26 3064 . . . . . 6 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) ↔ (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴))
31 oveq1 6657 . . . . . . . . . 10 (𝑖 = (𝐹𝐵) → (𝑖( ·𝑠𝑍)𝐵) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
3231neeq1d 2853 . . . . . . . . 9 (𝑖 = (𝐹𝐵) → ((𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴 ↔ ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
3332rspcv 3305 . . . . . . . 8 ((𝐹𝐵) ∈ ℤ → (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴 → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
34 zringbas 19824 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
3534eqcomi 2631 . . . . . . . . . . 11 (Base‘ℤring) = ℤ
3635eleq2i 2693 . . . . . . . . . 10 ((𝐹𝐵) ∈ (Base‘ℤring) ↔ (𝐹𝐵) ∈ ℤ)
3736biimpi 206 . . . . . . . . 9 ((𝐹𝐵) ∈ (Base‘ℤring) → (𝐹𝐵) ∈ ℤ)
3837adantr 481 . . . . . . . 8 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹𝐵) ∈ ℤ)
3933, 38syl11 33 . . . . . . 7 (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴 → (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
4039adantl 482 . . . . . 6 ((∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
4130, 40sylbi 207 . . . . 5 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
4229, 41ax-mp 5 . . . 4 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴)
4325, 42eqnetrd 2861 . . 3 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴)
445, 43sylbi 207 . 2 (𝐹:{𝐵}⟶(Base‘ℤring) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴)
451, 44syl 17 1 (𝐹 ∈ ((Base‘ℤring) ↑𝑚 {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  {csn 4177  {cpr 4179  cop 4183  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  0cc0 9936  1c1 9937  2c2 11070  3c3 11071  4c4 11072  6c6 11074  cz 11377  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  -gcsg 17424  LModclmod 18863  ringzring 19818   freeLMod cfrlm 20090   linC clinc 42193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-cntz 17750  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-cnfld 19747  df-zring 19819  df-dsmm 20076  df-frlm 20091  df-linc 42195
This theorem is referenced by:  ldepsnlinc  42297
  Copyright terms: Public domain W3C validator