Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepsnlinc Structured version   Visualization version   GIF version

Theorem ldepsnlinc 42297
Description: The reverse implication of islindeps2 42272 does not hold for arbitrary (left) modules, see note in [Roman] p. 112: "... if a nontrivial linear combination of the elements ... in an R-module M is 0, ... where not all of the coefficients are 0, then we cannot conclude ... that one of the elements ... is a linear combination of the others." This means that there is at least one left module having a linearly dependent subset in which there is at least one element which is not a linear combinantion of the other elements of this subset. Such a left module can be constructed by using zlmodzxzequa 42285 and zlmodzxznm 42286. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.)
Assertion
Ref Expression
ldepsnlinc 𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣))
Distinct variable group:   𝑓,𝑚,𝑠,𝑣

Proof of Theorem ldepsnlinc
StepHypRef Expression
1 eqid 2622 . . . 4 (ℤring freeLMod {0, 1}) = (ℤring freeLMod {0, 1})
21zlmodzxzlmod 42132 . . 3 ((ℤring freeLMod {0, 1}) ∈ LMod ∧ ℤring = (Scalar‘(ℤring freeLMod {0, 1})))
32simpli 474 . 2 (ℤring freeLMod {0, 1}) ∈ LMod
4 3z 11410 . . . . 5 3 ∈ ℤ
5 6nn 11189 . . . . . 6 6 ∈ ℕ
65nnzi 11401 . . . . 5 6 ∈ ℤ
71zlmodzxzel 42133 . . . . 5 ((3 ∈ ℤ ∧ 6 ∈ ℤ) → {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘(ℤring freeLMod {0, 1})))
84, 6, 7mp2an 708 . . . 4 {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘(ℤring freeLMod {0, 1}))
9 2z 11409 . . . . 5 2 ∈ ℤ
10 4z 11411 . . . . 5 4 ∈ ℤ
111zlmodzxzel 42133 . . . . 5 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘(ℤring freeLMod {0, 1})))
129, 10, 11mp2an 708 . . . 4 {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘(ℤring freeLMod {0, 1}))
13 prelpwi 4915 . . . 4 (({⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘(ℤring freeLMod {0, 1})) ∧ {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘(ℤring freeLMod {0, 1}))) → {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1})))
148, 12, 13mp2an 708 . . 3 {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))
15 eqid 2622 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} = {⟨0, 3⟩, ⟨1, 6⟩}
16 eqid 2622 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} = {⟨0, 2⟩, ⟨1, 4⟩}
171, 15, 16zlmodzxzldep 42293 . . . 4 {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1})
181, 15, 16ldepsnlinclem1 42294 . . . . . . . 8 (𝑓 ∈ ((Base‘ℤring) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}}) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})
19 simpr 477 . . . . . . . . . . . 12 (((ℤring freeLMod {0, 1}) ∈ LMod ∧ ℤring = (Scalar‘(ℤring freeLMod {0, 1}))) → ℤring = (Scalar‘(ℤring freeLMod {0, 1})))
2019eqcomd 2628 . . . . . . . . . . 11 (((ℤring freeLMod {0, 1}) ∈ LMod ∧ ℤring = (Scalar‘(ℤring freeLMod {0, 1}))) → (Scalar‘(ℤring freeLMod {0, 1})) = ℤring)
212, 20ax-mp 5 . . . . . . . . . 10 (Scalar‘(ℤring freeLMod {0, 1})) = ℤring
2221fveq2i 6194 . . . . . . . . 9 (Base‘(Scalar‘(ℤring freeLMod {0, 1}))) = (Base‘ℤring)
2322oveq1i 6660 . . . . . . . 8 ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}}) = ((Base‘ℤring) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}})
2418, 23eleq2s 2719 . . . . . . 7 (𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}}) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})
2524a1d 25 . . . . . 6 (𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}}) → (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩}))
2625rgen 2922 . . . . 5 𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})
271, 15, 16ldepsnlinclem2 42295 . . . . . . . 8 (𝑓 ∈ ((Base‘ℤring) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}}) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})
2822oveq1i 6660 . . . . . . . 8 ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}}) = ((Base‘ℤring) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}})
2927, 28eleq2s 2719 . . . . . . 7 (𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}}) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})
3029a1d 25 . . . . . 6 (𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}}) → (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩}))
3130rgen 2922 . . . . 5 𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})
32 prex 4909 . . . . . 6 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
33 prex 4909 . . . . . 6 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
34 sneq 4187 . . . . . . . . . 10 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → {𝑣} = {{⟨0, 3⟩, ⟨1, 6⟩}})
3534difeq2d 3728 . . . . . . . . 9 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}) = ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 3⟩, ⟨1, 6⟩}}))
361, 15, 16zlmodzxzldeplem 42287 . . . . . . . . . 10 {⟨0, 3⟩, ⟨1, 6⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩}
37 difprsn1 4330 . . . . . . . . . 10 ({⟨0, 3⟩, ⟨1, 6⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 3⟩, ⟨1, 6⟩}}) = {{⟨0, 2⟩, ⟨1, 4⟩}})
3836, 37ax-mp 5 . . . . . . . . 9 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 3⟩, ⟨1, 6⟩}}) = {{⟨0, 2⟩, ⟨1, 4⟩}}
3935, 38syl6eq 2672 . . . . . . . 8 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}) = {{⟨0, 2⟩, ⟨1, 4⟩}})
4039oveq2d 6666 . . . . . . 7 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) = ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}}))
4139oveq2d 6666 . . . . . . . . 9 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) = (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}))
42 id 22 . . . . . . . . 9 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → 𝑣 = {⟨0, 3⟩, ⟨1, 6⟩})
4341, 42neeq12d 2855 . . . . . . . 8 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ((𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣 ↔ (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩}))
4443imbi2d 330 . . . . . . 7 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ((𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})))
4540, 44raleqbidv 3152 . . . . . 6 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → (∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})))
46 sneq 4187 . . . . . . . . . 10 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → {𝑣} = {{⟨0, 2⟩, ⟨1, 4⟩}})
4746difeq2d 3728 . . . . . . . . 9 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}) = ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 2⟩, ⟨1, 4⟩}}))
48 difprsn2 4331 . . . . . . . . . 10 ({⟨0, 3⟩, ⟨1, 6⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 2⟩, ⟨1, 4⟩}}) = {{⟨0, 3⟩, ⟨1, 6⟩}})
4936, 48ax-mp 5 . . . . . . . . 9 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 2⟩, ⟨1, 4⟩}}) = {{⟨0, 3⟩, ⟨1, 6⟩}}
5047, 49syl6eq 2672 . . . . . . . 8 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}) = {{⟨0, 3⟩, ⟨1, 6⟩}})
5150oveq2d 6666 . . . . . . 7 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) = ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}}))
5250oveq2d 6666 . . . . . . . . 9 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) = (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}))
53 id 22 . . . . . . . . 9 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → 𝑣 = {⟨0, 2⟩, ⟨1, 4⟩})
5452, 53neeq12d 2855 . . . . . . . 8 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ((𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣 ↔ (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩}))
5554imbi2d 330 . . . . . . 7 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ((𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})))
5651, 55raleqbidv 3152 . . . . . 6 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → (∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})))
5732, 33, 45, 56ralpr 4238 . . . . 5 (∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ (∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 2⟩, ⟨1, 4⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩}) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 {{⟨0, 3⟩, ⟨1, 6⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})))
5826, 31, 57mpbir2an 955 . . . 4 𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣)
5917, 58pm3.2i 471 . . 3 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣))
60 breq1 4656 . . . . 5 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (𝑠 linDepS (ℤring freeLMod {0, 1}) ↔ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1})))
61 id 22 . . . . . 6 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → 𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}})
62 difeq1 3721 . . . . . . . 8 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (𝑠 ∖ {𝑣}) = ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))
6362oveq2d 6666 . . . . . . 7 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣})) = ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})))
6462oveq2d 6666 . . . . . . . . 9 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) = (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})))
6564neeq1d 2853 . . . . . . . 8 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → ((𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣 ↔ (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣))
6665imbi2d 330 . . . . . . 7 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → ((𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣)))
6763, 66raleqbidv 3152 . . . . . 6 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣)))
6861, 67raleqbidv 3152 . . . . 5 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣)))
6960, 68anbi12d 747 . . . 4 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → ((𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣))))
7069rspcev 3309 . . 3 (({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1})) ∧ ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣))) → ∃𝑠 ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))(𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)))
7114, 59, 70mp2an 708 . 2 𝑠 ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))(𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))
72 fveq2 6191 . . . . 5 (𝑚 = (ℤring freeLMod {0, 1}) → (Base‘𝑚) = (Base‘(ℤring freeLMod {0, 1})))
7372pweqd 4163 . . . 4 (𝑚 = (ℤring freeLMod {0, 1}) → 𝒫 (Base‘𝑚) = 𝒫 (Base‘(ℤring freeLMod {0, 1})))
74 breq2 4657 . . . . 5 (𝑚 = (ℤring freeLMod {0, 1}) → (𝑠 linDepS 𝑚𝑠 linDepS (ℤring freeLMod {0, 1})))
75 fveq2 6191 . . . . . . . . 9 (𝑚 = (ℤring freeLMod {0, 1}) → (Scalar‘𝑚) = (Scalar‘(ℤring freeLMod {0, 1})))
7675fveq2d 6195 . . . . . . . 8 (𝑚 = (ℤring freeLMod {0, 1}) → (Base‘(Scalar‘𝑚)) = (Base‘(Scalar‘(ℤring freeLMod {0, 1}))))
7776oveq1d 6665 . . . . . . 7 (𝑚 = (ℤring freeLMod {0, 1}) → ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣})) = ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣})))
7875fveq2d 6195 . . . . . . . . 9 (𝑚 = (ℤring freeLMod {0, 1}) → (0g‘(Scalar‘𝑚)) = (0g‘(Scalar‘(ℤring freeLMod {0, 1}))))
7978breq2d 4665 . . . . . . . 8 (𝑚 = (ℤring freeLMod {0, 1}) → (𝑓 finSupp (0g‘(Scalar‘𝑚)) ↔ 𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1})))))
80 fveq2 6191 . . . . . . . . . 10 (𝑚 = (ℤring freeLMod {0, 1}) → ( linC ‘𝑚) = ( linC ‘(ℤring freeLMod {0, 1})))
8180oveqd 6667 . . . . . . . . 9 (𝑚 = (ℤring freeLMod {0, 1}) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})))
8281neeq1d 2853 . . . . . . . 8 (𝑚 = (ℤring freeLMod {0, 1}) → ((𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣 ↔ (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))
8379, 82imbi12d 334 . . . . . . 7 (𝑚 = (ℤring freeLMod {0, 1}) → ((𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)))
8477, 83raleqbidv 3152 . . . . . 6 (𝑚 = (ℤring freeLMod {0, 1}) → (∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)))
8584ralbidv 2986 . . . . 5 (𝑚 = (ℤring freeLMod {0, 1}) → (∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)))
8674, 85anbi12d 747 . . . 4 (𝑚 = (ℤring freeLMod {0, 1}) → ((𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ (𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))))
8773, 86rexeqbidv 3153 . . 3 (𝑚 = (ℤring freeLMod {0, 1}) → (∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ ∃𝑠 ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))(𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))))
8887rspcev 3309 . 2 (((ℤring freeLMod {0, 1}) ∈ LMod ∧ ∃𝑠 ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))(𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))) → ∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)))
893, 71, 88mp2an 708 1 𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  cdif 3571  𝒫 cpw 4158  {csn 4177  {cpr 4179  cop 4183   class class class wbr 4653  cfv 5888  (class class class)co 6650  𝑚 cmap 7857   finSupp cfsupp 8275  0cc0 9936  1c1 9937  2c2 11070  3c3 11071  4c4 11072  6c6 11074  cz 11377  Basecbs 15857  Scalarcsca 15944  0gc0g 16100  LModclmod 18863  ringzring 19818   freeLMod cfrlm 20090   linC clinc 42193   linDepS clindeps 42230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-cnfld 19747  df-zring 19819  df-dsmm 20076  df-frlm 20091  df-linc 42195  df-lininds 42231  df-lindeps 42233
This theorem is referenced by:  ldepslinc  42298
  Copyright terms: Public domain W3C validator