| Step | Hyp | Ref
| Expression |
| 1 | | mbflimsup.2 |
. . 3
⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) |
| 2 | | mbflimsup.h |
. . . . . 6
⊢ 𝐻 = (𝑚 ∈ ℝ ↦ sup((((𝑛 ∈ 𝑍 ↦ 𝐵) “ (𝑚[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 3 | | mbflimsup.1 |
. . . . . . . . 9
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 4 | | fvex 6201 |
. . . . . . . . 9
⊢
(ℤ≥‘𝑀) ∈ V |
| 5 | 3, 4 | eqeltri 2697 |
. . . . . . . 8
⊢ 𝑍 ∈ V |
| 6 | 5 | mptex 6486 |
. . . . . . 7
⊢ (𝑛 ∈ 𝑍 ↦ 𝐵) ∈ V |
| 7 | 6 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ∈ V) |
| 8 | | uzssz 11707 |
. . . . . . . . 9
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
| 9 | 3, 8 | eqsstri 3635 |
. . . . . . . 8
⊢ 𝑍 ⊆
ℤ |
| 10 | | zssre 11384 |
. . . . . . . 8
⊢ ℤ
⊆ ℝ |
| 11 | 9, 10 | sstri 3612 |
. . . . . . 7
⊢ 𝑍 ⊆
ℝ |
| 12 | 11 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑍 ⊆ ℝ) |
| 13 | | mbflimsup.3 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 14 | 3 | uzsup 12662 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) =
+∞) |
| 15 | 13, 14 | syl 17 |
. . . . . . 7
⊢ (𝜑 → sup(𝑍, ℝ*, < ) =
+∞) |
| 16 | 15 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → sup(𝑍, ℝ*, < ) =
+∞) |
| 17 | 2, 7, 12, 16 | limsupval2 14211 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) = inf((𝐻 “ 𝑍), ℝ*, <
)) |
| 18 | | imassrn 5477 |
. . . . . . 7
⊢ (𝐻 “ 𝑍) ⊆ ran 𝐻 |
| 19 | 13 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ∈ ℤ) |
| 20 | | mbflimsup.6 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) |
| 21 | 20 | anass1rs 849 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| 22 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑍 ↦ 𝐵) = (𝑛 ∈ 𝑍 ↦ 𝐵) |
| 23 | 21, 22 | fmptd 6385 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
| 24 | | mbflimsup.4 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) |
| 25 | 24 | ltpnfd 11955 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) < +∞) |
| 26 | 2, 3 | limsupgre 14212 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ (𝑛 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ ∧ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) < +∞) → 𝐻:ℝ⟶ℝ) |
| 27 | 19, 23, 25, 26 | syl3anc 1326 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻:ℝ⟶ℝ) |
| 28 | | frn 6053 |
. . . . . . . 8
⊢ (𝐻:ℝ⟶ℝ →
ran 𝐻 ⊆
ℝ) |
| 29 | 27, 28 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ran 𝐻 ⊆ ℝ) |
| 30 | 18, 29 | syl5ss 3614 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻 “ 𝑍) ⊆ ℝ) |
| 31 | | fdm 6051 |
. . . . . . . . . . 11
⊢ (𝐻:ℝ⟶ℝ →
dom 𝐻 =
ℝ) |
| 32 | 27, 31 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → dom 𝐻 = ℝ) |
| 33 | 32 | ineq1d 3813 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (dom 𝐻 ∩ 𝑍) = (ℝ ∩ 𝑍)) |
| 34 | | sseqin2 3817 |
. . . . . . . . . 10
⊢ (𝑍 ⊆ ℝ ↔ (ℝ
∩ 𝑍) = 𝑍) |
| 35 | 11, 34 | mpbi 220 |
. . . . . . . . 9
⊢ (ℝ
∩ 𝑍) = 𝑍 |
| 36 | 33, 35 | syl6eq 2672 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (dom 𝐻 ∩ 𝑍) = 𝑍) |
| 37 | | uzid 11702 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
| 38 | 13, 37 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 39 | 38, 3 | syl6eleqr 2712 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 40 | 39 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ∈ 𝑍) |
| 41 | | ne0i 3921 |
. . . . . . . . 9
⊢ (𝑀 ∈ 𝑍 → 𝑍 ≠ ∅) |
| 42 | 40, 41 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑍 ≠ ∅) |
| 43 | 36, 42 | eqnetrd 2861 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (dom 𝐻 ∩ 𝑍) ≠ ∅) |
| 44 | | imadisj 5484 |
. . . . . . . 8
⊢ ((𝐻 “ 𝑍) = ∅ ↔ (dom 𝐻 ∩ 𝑍) = ∅) |
| 45 | 44 | necon3bii 2846 |
. . . . . . 7
⊢ ((𝐻 “ 𝑍) ≠ ∅ ↔ (dom 𝐻 ∩ 𝑍) ≠ ∅) |
| 46 | 43, 45 | sylibr 224 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻 “ 𝑍) ≠ ∅) |
| 47 | 24 | leidd 10594 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) |
| 48 | 21 | rexrd 10089 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → 𝐵 ∈
ℝ*) |
| 49 | 48, 22 | fmptd 6385 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ*) |
| 50 | 24 | rexrd 10089 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ∈
ℝ*) |
| 51 | 2 | limsuple 14209 |
. . . . . . . . . . 11
⊢ ((𝑍 ⊆ ℝ ∧ (𝑛 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ* ∧ (lim
sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ*) → ((lim
sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ↔ ∀𝑦 ∈ ℝ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (𝐻‘𝑦))) |
| 52 | 12, 49, 50, 51 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ↔ ∀𝑦 ∈ ℝ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (𝐻‘𝑦))) |
| 53 | 47, 52 | mpbid 222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ ℝ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (𝐻‘𝑦)) |
| 54 | | ssralv 3666 |
. . . . . . . . 9
⊢ (𝑍 ⊆ ℝ →
(∀𝑦 ∈ ℝ
(lim sup‘(𝑛 ∈
𝑍 ↦ 𝐵)) ≤ (𝐻‘𝑦) → ∀𝑦 ∈ 𝑍 (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (𝐻‘𝑦))) |
| 55 | 11, 53, 54 | mpsyl 68 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝑍 (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (𝐻‘𝑦)) |
| 56 | 2 | limsupgf 14206 |
. . . . . . . . . 10
⊢ 𝐻:ℝ⟶ℝ* |
| 57 | | ffn 6045 |
. . . . . . . . . 10
⊢ (𝐻:ℝ⟶ℝ* →
𝐻 Fn
ℝ) |
| 58 | 56, 57 | ax-mp 5 |
. . . . . . . . 9
⊢ 𝐻 Fn ℝ |
| 59 | | breq2 4657 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐻‘𝑦) → ((lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ 𝑧 ↔ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (𝐻‘𝑦))) |
| 60 | 59 | ralima 6498 |
. . . . . . . . 9
⊢ ((𝐻 Fn ℝ ∧ 𝑍 ⊆ ℝ) →
(∀𝑧 ∈ (𝐻 “ 𝑍)(lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑍 (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (𝐻‘𝑦))) |
| 61 | 58, 12, 60 | sylancr 695 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑧 ∈ (𝐻 “ 𝑍)(lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑍 (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (𝐻‘𝑦))) |
| 62 | 55, 61 | mpbird 247 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑧 ∈ (𝐻 “ 𝑍)(lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ 𝑧) |
| 63 | | breq1 4656 |
. . . . . . . . 9
⊢ (𝑦 = (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) → (𝑦 ≤ 𝑧 ↔ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ 𝑧)) |
| 64 | 63 | ralbidv 2986 |
. . . . . . . 8
⊢ (𝑦 = (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) → (∀𝑧 ∈ (𝐻 “ 𝑍)𝑦 ≤ 𝑧 ↔ ∀𝑧 ∈ (𝐻 “ 𝑍)(lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ 𝑧)) |
| 65 | 64 | rspcev 3309 |
. . . . . . 7
⊢ (((lim
sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ ∧ ∀𝑧 ∈ (𝐻 “ 𝑍)(lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐻 “ 𝑍)𝑦 ≤ 𝑧) |
| 66 | 24, 62, 65 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐻 “ 𝑍)𝑦 ≤ 𝑧) |
| 67 | | infxrre 12166 |
. . . . . 6
⊢ (((𝐻 “ 𝑍) ⊆ ℝ ∧ (𝐻 “ 𝑍) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐻 “ 𝑍)𝑦 ≤ 𝑧) → inf((𝐻 “ 𝑍), ℝ*, < ) = inf((𝐻 “ 𝑍), ℝ, < )) |
| 68 | 30, 46, 66, 67 | syl3anc 1326 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf((𝐻 “ 𝑍), ℝ*, < ) = inf((𝐻 “ 𝑍), ℝ, < )) |
| 69 | | df-ima 5127 |
. . . . . . 7
⊢ (𝐻 “ 𝑍) = ran (𝐻 ↾ 𝑍) |
| 70 | 27 | feqmptd 6249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 = (𝑖 ∈ ℝ ↦ (𝐻‘𝑖))) |
| 71 | 70 | reseq1d 5395 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻 ↾ 𝑍) = ((𝑖 ∈ ℝ ↦ (𝐻‘𝑖)) ↾ 𝑍)) |
| 72 | | resmpt 5449 |
. . . . . . . . . . 11
⊢ (𝑍 ⊆ ℝ → ((𝑖 ∈ ℝ ↦ (𝐻‘𝑖)) ↾ 𝑍) = (𝑖 ∈ 𝑍 ↦ (𝐻‘𝑖))) |
| 73 | 11, 72 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ ℝ ↦ (𝐻‘𝑖)) ↾ 𝑍) = (𝑖 ∈ 𝑍 ↦ (𝐻‘𝑖)) |
| 74 | 71, 73 | syl6eq 2672 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻 ↾ 𝑍) = (𝑖 ∈ 𝑍 ↦ (𝐻‘𝑖))) |
| 75 | 11 | sseli 3599 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ 𝑍 → 𝑖 ∈ ℝ) |
| 76 | | ffvelrn 6357 |
. . . . . . . . . . . . 13
⊢ ((𝐻:ℝ⟶ℝ ∧
𝑖 ∈ ℝ) →
(𝐻‘𝑖) ∈ ℝ) |
| 77 | 27, 75, 76 | syl2an 494 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → (𝐻‘𝑖) ∈ ℝ) |
| 78 | 77 | rexrd 10089 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → (𝐻‘𝑖) ∈
ℝ*) |
| 79 | | simplll 798 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑖)) → 𝜑) |
| 80 | 3 | uztrn2 11705 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑖)) → 𝑛 ∈ 𝑍) |
| 81 | 80 | adantll 750 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑖)) → 𝑛 ∈ 𝑍) |
| 82 | | simpllr 799 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑖)) → 𝑥 ∈ 𝐴) |
| 83 | 79, 81, 82, 20 | syl12anc 1324 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑖)) → 𝐵 ∈ ℝ) |
| 84 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵) = (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵) |
| 85 | 83, 84 | fmptd 6385 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵):(ℤ≥‘𝑖)⟶ℝ) |
| 86 | | frn 6053 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵):(ℤ≥‘𝑖)⟶ℝ → ran
(𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵) ⊆ ℝ) |
| 87 | 85, 86 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵) ⊆ ℝ) |
| 88 | 84, 83 | dmmptd 6024 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → dom (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵) = (ℤ≥‘𝑖)) |
| 89 | | simpr 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝑖 ∈ 𝑍) |
| 90 | 89, 3 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝑖 ∈ (ℤ≥‘𝑀)) |
| 91 | | eluzelz 11697 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈
(ℤ≥‘𝑀) → 𝑖 ∈ ℤ) |
| 92 | 90, 91 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝑖 ∈ ℤ) |
| 93 | 92 | adantlr 751 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → 𝑖 ∈ ℤ) |
| 94 | | uzid 11702 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ℤ → 𝑖 ∈
(ℤ≥‘𝑖)) |
| 95 | | ne0i 3921 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈
(ℤ≥‘𝑖) → (ℤ≥‘𝑖) ≠ ∅) |
| 96 | 93, 94, 95 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → (ℤ≥‘𝑖) ≠ ∅) |
| 97 | 88, 96 | eqnetrd 2861 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → dom (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵) ≠ ∅) |
| 98 | | dm0rn0 5342 |
. . . . . . . . . . . . . . 15
⊢ (dom
(𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵) = ∅ ↔ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵) = ∅) |
| 99 | 98 | necon3bii 2846 |
. . . . . . . . . . . . . 14
⊢ (dom
(𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵) ≠ ∅ ↔ ran (𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵) ≠ ∅) |
| 100 | 97, 99 | sylib 208 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵) ≠ ∅) |
| 101 | 90 | adantlr 751 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → 𝑖 ∈ (ℤ≥‘𝑀)) |
| 102 | | uzss 11708 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑖) ⊆
(ℤ≥‘𝑀)) |
| 103 | 101, 102 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → (ℤ≥‘𝑖) ⊆
(ℤ≥‘𝑀)) |
| 104 | 103, 3 | syl6sseqr 3652 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → (ℤ≥‘𝑖) ⊆ 𝑍) |
| 105 | 77 | leidd 10594 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → (𝐻‘𝑖) ≤ (𝐻‘𝑖)) |
| 106 | 11 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → 𝑍 ⊆ ℝ) |
| 107 | 49 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → (𝑛 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ*) |
| 108 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → 𝑖 ∈ 𝑍) |
| 109 | 11, 108 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → 𝑖 ∈ ℝ) |
| 110 | 2 | limsupgle 14208 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑍 ⊆ ℝ ∧ (𝑛 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ*) ∧ 𝑖 ∈ ℝ ∧ (𝐻‘𝑖) ∈ ℝ*) → ((𝐻‘𝑖) ≤ (𝐻‘𝑖) ↔ ∀𝑘 ∈ 𝑍 (𝑖 ≤ 𝑘 → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖)))) |
| 111 | 106, 107,
109, 78, 110 | syl211anc 1332 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → ((𝐻‘𝑖) ≤ (𝐻‘𝑖) ↔ ∀𝑘 ∈ 𝑍 (𝑖 ≤ 𝑘 → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖)))) |
| 112 | 105, 111 | mpbid 222 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → ∀𝑘 ∈ 𝑍 (𝑖 ≤ 𝑘 → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖))) |
| 113 | | ssralv 3666 |
. . . . . . . . . . . . . . . . 17
⊢
((ℤ≥‘𝑖) ⊆ 𝑍 → (∀𝑘 ∈ 𝑍 (𝑖 ≤ 𝑘 → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖)) → ∀𝑘 ∈ (ℤ≥‘𝑖)(𝑖 ≤ 𝑘 → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖)))) |
| 114 | 104, 112,
113 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → ∀𝑘 ∈ (ℤ≥‘𝑖)(𝑖 ≤ 𝑘 → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖))) |
| 115 | 104 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) →
(ℤ≥‘𝑖) ⊆ 𝑍) |
| 116 | 115 | resmptd 5452 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → ((𝑛 ∈ 𝑍 ↦ 𝐵) ↾
(ℤ≥‘𝑖)) = (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)) |
| 117 | 116 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → (((𝑛 ∈ 𝑍 ↦ 𝐵) ↾
(ℤ≥‘𝑖))‘𝑘) = ((𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)‘𝑘)) |
| 118 | | fvres 6207 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈
(ℤ≥‘𝑖) → (((𝑛 ∈ 𝑍 ↦ 𝐵) ↾
(ℤ≥‘𝑖))‘𝑘) = ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘)) |
| 119 | 118 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → (((𝑛 ∈ 𝑍 ↦ 𝐵) ↾
(ℤ≥‘𝑖))‘𝑘) = ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘)) |
| 120 | 117, 119 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → ((𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)‘𝑘) = ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘)) |
| 121 | 120 | breq1d 4663 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → (((𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖) ↔ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖))) |
| 122 | | eluzle 11700 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈
(ℤ≥‘𝑖) → 𝑖 ≤ 𝑘) |
| 123 | 122 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝑖 ≤ 𝑘) |
| 124 | | biimt 350 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ≤ 𝑘 → (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖) ↔ (𝑖 ≤ 𝑘 → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖)))) |
| 125 | 123, 124 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → (((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖) ↔ (𝑖 ≤ 𝑘 → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖)))) |
| 126 | 121, 125 | bitrd 268 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → (((𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖) ↔ (𝑖 ≤ 𝑘 → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖)))) |
| 127 | 126 | ralbidva 2985 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑖)((𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖) ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)(𝑖 ≤ 𝑘 → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖)))) |
| 128 | 114, 127 | mpbird 247 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → ∀𝑘 ∈ (ℤ≥‘𝑖)((𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖)) |
| 129 | | ffn 6045 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵):(ℤ≥‘𝑖)⟶ℝ → (𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵) Fn (ℤ≥‘𝑖)) |
| 130 | | breq1 4656 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = ((𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)‘𝑘) → (𝑧 ≤ (𝐻‘𝑖) ↔ ((𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖))) |
| 131 | 130 | ralrn 6362 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵) Fn (ℤ≥‘𝑖) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)𝑧 ≤ (𝐻‘𝑖) ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)((𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖))) |
| 132 | 85, 129, 131 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)𝑧 ≤ (𝐻‘𝑖) ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)((𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)‘𝑘) ≤ (𝐻‘𝑖))) |
| 133 | 128, 132 | mpbird 247 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → ∀𝑧 ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)𝑧 ≤ (𝐻‘𝑖)) |
| 134 | | breq2 4657 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝐻‘𝑖) → (𝑧 ≤ 𝑦 ↔ 𝑧 ≤ (𝐻‘𝑖))) |
| 135 | 134 | ralbidv 2986 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝐻‘𝑖) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)𝑧 ≤ 𝑦 ↔ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)𝑧 ≤ (𝐻‘𝑖))) |
| 136 | 135 | rspcev 3309 |
. . . . . . . . . . . . . 14
⊢ (((𝐻‘𝑖) ∈ ℝ ∧ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)𝑧 ≤ (𝐻‘𝑖)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)𝑧 ≤ 𝑦) |
| 137 | 77, 133, 136 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)𝑧 ≤ 𝑦) |
| 138 | | suprcl 10983 |
. . . . . . . . . . . . 13
⊢ ((ran
(𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵) ⊆ ℝ ∧ ran (𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)𝑧 ≤ 𝑦) → sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ) ∈
ℝ) |
| 139 | 87, 100, 137, 138 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ) ∈
ℝ) |
| 140 | 139 | rexrd 10089 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ) ∈
ℝ*) |
| 141 | 87 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ (𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘)) → ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵) ⊆ ℝ) |
| 142 | 100 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ (𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘)) → ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵) ≠ ∅) |
| 143 | 137 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ (𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)𝑧 ≤ 𝑦) |
| 144 | 9 | sseli 3599 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
| 145 | | eluz 11701 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈
(ℤ≥‘𝑖) ↔ 𝑖 ≤ 𝑘)) |
| 146 | 93, 144, 145 | syl2an 494 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (𝑘 ∈ (ℤ≥‘𝑖) ↔ 𝑖 ≤ 𝑘)) |
| 147 | 146 | biimprd 238 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (𝑖 ≤ 𝑘 → 𝑘 ∈ (ℤ≥‘𝑖))) |
| 148 | 147 | impr 649 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ (𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘)) → 𝑘 ∈ (ℤ≥‘𝑖)) |
| 149 | 148, 120 | syldan 487 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ (𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘)) → ((𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)‘𝑘) = ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘)) |
| 150 | 85 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ (𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘)) → (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵):(ℤ≥‘𝑖)⟶ℝ) |
| 151 | 150, 129 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ (𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘)) → (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵) Fn (ℤ≥‘𝑖)) |
| 152 | | fnfvelrn 6356 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵) Fn (ℤ≥‘𝑖) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → ((𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)) |
| 153 | 151, 148,
152 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ (𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘)) → ((𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)) |
| 154 | 149, 153 | eqeltrrd 2702 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ (𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘)) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)) |
| 155 | | suprub 10984 |
. . . . . . . . . . . . . . 15
⊢ (((ran
(𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵) ⊆ ℝ ∧ ran (𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)𝑧 ≤ 𝑦) ∧ ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )) |
| 156 | 141, 142,
143, 154, 155 | syl31anc 1329 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ (𝑘 ∈ 𝑍 ∧ 𝑖 ≤ 𝑘)) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )) |
| 157 | 156 | expr 643 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (𝑖 ≤ 𝑘 → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ))) |
| 158 | 157 | ralrimiva 2966 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → ∀𝑘 ∈ 𝑍 (𝑖 ≤ 𝑘 → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ))) |
| 159 | 2 | limsupgle 14208 |
. . . . . . . . . . . . 13
⊢ (((𝑍 ⊆ ℝ ∧ (𝑛 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ*) ∧ 𝑖 ∈ ℝ ∧ sup(ran
(𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ) ∈
ℝ*) → ((𝐻‘𝑖) ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ) ↔ ∀𝑘 ∈ 𝑍 (𝑖 ≤ 𝑘 → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )))) |
| 160 | 106, 107,
109, 140, 159 | syl211anc 1332 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → ((𝐻‘𝑖) ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ) ↔ ∀𝑘 ∈ 𝑍 (𝑖 ≤ 𝑘 → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )))) |
| 161 | 158, 160 | mpbird 247 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → (𝐻‘𝑖) ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )) |
| 162 | | suprleub 10989 |
. . . . . . . . . . . . 13
⊢ (((ran
(𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵) ⊆ ℝ ∧ ran (𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)𝑧 ≤ 𝑦) ∧ (𝐻‘𝑖) ∈ ℝ) → (sup(ran (𝑛 ∈
(ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ) ≤ (𝐻‘𝑖) ↔ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)𝑧 ≤ (𝐻‘𝑖))) |
| 163 | 87, 100, 137, 77, 162 | syl31anc 1329 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → (sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ) ≤ (𝐻‘𝑖) ↔ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)𝑧 ≤ (𝐻‘𝑖))) |
| 164 | 133, 163 | mpbird 247 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ) ≤ (𝐻‘𝑖)) |
| 165 | 78, 140, 161, 164 | xrletrid 11986 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → (𝐻‘𝑖) = sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )) |
| 166 | 165 | mpteq2dva 4744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑖 ∈ 𝑍 ↦ (𝐻‘𝑖)) = (𝑖 ∈ 𝑍 ↦ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ))) |
| 167 | 74, 166 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻 ↾ 𝑍) = (𝑖 ∈ 𝑍 ↦ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ))) |
| 168 | 167 | rneqd 5353 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ran (𝐻 ↾ 𝑍) = ran (𝑖 ∈ 𝑍 ↦ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ))) |
| 169 | 69, 168 | syl5eq 2668 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻 “ 𝑍) = ran (𝑖 ∈ 𝑍 ↦ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ))) |
| 170 | 169 | infeq1d 8383 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → inf((𝐻 “ 𝑍), ℝ, < ) = inf(ran (𝑖 ∈ 𝑍 ↦ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )), ℝ, <
)) |
| 171 | 17, 68, 170 | 3eqtrd 2660 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) = inf(ran (𝑖 ∈ 𝑍 ↦ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )), ℝ, <
)) |
| 172 | 171 | mpteq2dva 4744 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) = (𝑥 ∈ 𝐴 ↦ inf(ran (𝑖 ∈ 𝑍 ↦ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )), ℝ, <
))) |
| 173 | 1, 172 | syl5eq 2668 |
. 2
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ inf(ran (𝑖 ∈ 𝑍 ↦ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )), ℝ, <
))) |
| 174 | | eqid 2622 |
. . 3
⊢ (𝑥 ∈ 𝐴 ↦ inf(ran (𝑖 ∈ 𝑍 ↦ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )) =
(𝑥 ∈ 𝐴 ↦ inf(ran (𝑖 ∈ 𝑍 ↦ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )), ℝ, <
)) |
| 175 | | eqid 2622 |
. . . 4
⊢
(ℤ≥‘𝑖) = (ℤ≥‘𝑖) |
| 176 | | eqid 2622 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )) = (𝑥 ∈ 𝐴 ↦ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )) |
| 177 | | simpll 790 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑖)) → 𝜑) |
| 178 | 80 | adantll 750 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑖)) → 𝑛 ∈ 𝑍) |
| 179 | | mbflimsup.5 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 180 | 177, 178,
179 | syl2anc 693 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑖)) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 181 | | simpll 790 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑖) ∧ 𝑥 ∈ 𝐴)) → 𝜑) |
| 182 | 80 | ad2ant2lr 784 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑖) ∧ 𝑥 ∈ 𝐴)) → 𝑛 ∈ 𝑍) |
| 183 | | simprr 796 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑖) ∧ 𝑥 ∈ 𝐴)) → 𝑥 ∈ 𝐴) |
| 184 | 181, 182,
183, 20 | syl12anc 1324 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑛 ∈ (ℤ≥‘𝑖) ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) |
| 185 | 83 | ralrimiva 2966 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → ∀𝑛 ∈ (ℤ≥‘𝑖)𝐵 ∈ ℝ) |
| 186 | | breq1 4656 |
. . . . . . . . 9
⊢ (𝑧 = 𝐵 → (𝑧 ≤ 𝑦 ↔ 𝐵 ≤ 𝑦)) |
| 187 | 84, 186 | ralrnmpt 6368 |
. . . . . . . 8
⊢
(∀𝑛 ∈
(ℤ≥‘𝑖)𝐵 ∈ ℝ → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)𝑧 ≤ 𝑦 ↔ ∀𝑛 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦)) |
| 188 | 185, 187 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → (∀𝑧 ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)𝑧 ≤ 𝑦 ↔ ∀𝑛 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦)) |
| 189 | 188 | rexbidv 3052 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵)𝑧 ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦)) |
| 190 | 137, 189 | mpbid 222 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) |
| 191 | 190 | an32s 846 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ (ℤ≥‘𝑖)𝐵 ≤ 𝑦) |
| 192 | 175, 176,
92, 180, 184, 191 | mbfsup 23431 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )) ∈
MblFn) |
| 193 | 139 | an32s 846 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑥 ∈ 𝐴) → sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ) ∈
ℝ) |
| 194 | 193 | anasss 679 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ) ∈
ℝ) |
| 195 | 2 | limsuple 14209 |
. . . . . . . 8
⊢ ((𝑍 ⊆ ℝ ∧ (𝑛 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ* ∧ (lim
sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ*) → ((lim
sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ↔ ∀𝑖 ∈ ℝ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (𝐻‘𝑖))) |
| 196 | 12, 49, 50, 195 | syl3anc 1326 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ↔ ∀𝑖 ∈ ℝ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (𝐻‘𝑖))) |
| 197 | 47, 196 | mpbid 222 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑖 ∈ ℝ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (𝐻‘𝑖)) |
| 198 | | ssralv 3666 |
. . . . . 6
⊢ (𝑍 ⊆ ℝ →
(∀𝑖 ∈ ℝ
(lim sup‘(𝑛 ∈
𝑍 ↦ 𝐵)) ≤ (𝐻‘𝑖) → ∀𝑖 ∈ 𝑍 (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (𝐻‘𝑖))) |
| 199 | 11, 197, 198 | mpsyl 68 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑖 ∈ 𝑍 (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (𝐻‘𝑖)) |
| 200 | 165 | breq2d 4665 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑖 ∈ 𝑍) → ((lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (𝐻‘𝑖) ↔ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ))) |
| 201 | 200 | ralbidva 2985 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑖 ∈ 𝑍 (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ (𝐻‘𝑖) ↔ ∀𝑖 ∈ 𝑍 (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ))) |
| 202 | 199, 201 | mpbid 222 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑖 ∈ 𝑍 (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )) |
| 203 | | breq1 4656 |
. . . . . 6
⊢ (𝑦 = (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) → (𝑦 ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ) ↔ (lim
sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ))) |
| 204 | 203 | ralbidv 2986 |
. . . . 5
⊢ (𝑦 = (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) → (∀𝑖 ∈ 𝑍 𝑦 ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ) ↔ ∀𝑖 ∈ 𝑍 (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < ))) |
| 205 | 204 | rspcev 3309 |
. . . 4
⊢ (((lim
sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ ∧ ∀𝑖 ∈ 𝑍 (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )) → ∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 𝑦 ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )) |
| 206 | 24, 202, 205 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 𝑦 ≤ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )) |
| 207 | 3, 174, 13, 192, 194, 206 | mbfinf 23432 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ inf(ran (𝑖 ∈ 𝑍 ↦ sup(ran (𝑛 ∈ (ℤ≥‘𝑖) ↦ 𝐵), ℝ, < )), ℝ, < )) ∈
MblFn) |
| 208 | 173, 207 | eqeltrd 2701 |
1
⊢ (𝜑 → 𝐺 ∈ MblFn) |