MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmulc2 Structured version   Visualization version   Unicode version

Theorem mbfmulc2 23430
Description: A complex constant times a measurable function is measurable. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
mbfmulc2.1  |-  ( ph  ->  C  e.  CC )
mbfmulc2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
mbfmulc2.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
Assertion
Ref Expression
mbfmulc2  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e. MblFn )
Distinct variable groups:    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem mbfmulc2
StepHypRef Expression
1 mbfmulc2.3 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
2 mbfmulc2.2 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
31, 2mbfdm2 23405 . . . . 5  |-  ( ph  ->  A  e.  dom  vol )
4 mbfmulc2.1 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
54recld 13934 . . . . . . . 8  |-  ( ph  ->  ( Re `  C
)  e.  RR )
65adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  C )  e.  RR )
76recnd 10068 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  C )  e.  CC )
81, 2mbfmptcl 23404 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
98recld 13934 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
109recnd 10068 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  CC )
117, 10mulcld 10060 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( Re `  C
)  x.  ( Re
`  B ) )  e.  CC )
12 ovexd 6680 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( -u ( Im `  C
)  x.  ( Im
`  B ) )  e.  _V )
13 fconstmpt 5163 . . . . . . 7  |-  ( A  X.  { ( Re
`  C ) } )  =  ( x  e.  A  |->  ( Re
`  C ) )
1413a1i 11 . . . . . 6  |-  ( ph  ->  ( A  X.  {
( Re `  C
) } )  =  ( x  e.  A  |->  ( Re `  C
) ) )
15 eqidd 2623 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  =  ( x  e.  A  |->  ( Re `  B ) ) )
163, 6, 9, 14, 15offval2 6914 . . . . 5  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  =  ( x  e.  A  |->  ( ( Re `  C
)  x.  ( Re
`  B ) ) ) )
174imcld 13935 . . . . . . . 8  |-  ( ph  ->  ( Im `  C
)  e.  RR )
1817renegcld 10457 . . . . . . 7  |-  ( ph  -> 
-u ( Im `  C )  e.  RR )
1918adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Im `  C )  e.  RR )
208imcld 13935 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
21 fconstmpt 5163 . . . . . . 7  |-  ( A  X.  { -u (
Im `  C ) } )  =  ( x  e.  A  |->  -u ( Im `  C ) )
2221a1i 11 . . . . . 6  |-  ( ph  ->  ( A  X.  { -u ( Im `  C
) } )  =  ( x  e.  A  |-> 
-u ( Im `  C ) ) )
23 eqidd 2623 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  =  ( x  e.  A  |->  ( Im `  B ) ) )
243, 19, 20, 22, 23offval2 6914 . . . . 5  |-  ( ph  ->  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  =  ( x  e.  A  |->  (
-u ( Im `  C )  x.  (
Im `  B )
) ) )
253, 11, 12, 16, 24offval2 6914 . . . 4  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B
) ) )  oF  +  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B ) ) ) )  =  ( x  e.  A  |->  ( ( ( Re `  C
)  x.  ( Re
`  B ) )  +  ( -u (
Im `  C )  x.  ( Im `  B
) ) ) ) )
2617adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  C )  e.  RR )
2726recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  C )  e.  CC )
2820recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  CC )
2927, 28mulcld 10060 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( Im `  C
)  x.  ( Im
`  B ) )  e.  CC )
3011, 29negsubd 10398 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( Re `  C )  x.  (
Re `  B )
)  +  -u (
( Im `  C
)  x.  ( Im
`  B ) ) )  =  ( ( ( Re `  C
)  x.  ( Re
`  B ) )  -  ( ( Im
`  C )  x.  ( Im `  B
) ) ) )
3127, 28mulneg1d 10483 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( -u ( Im `  C
)  x.  ( Im
`  B ) )  =  -u ( ( Im
`  C )  x.  ( Im `  B
) ) )
3231oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( Re `  C )  x.  (
Re `  B )
)  +  ( -u ( Im `  C )  x.  ( Im `  B ) ) )  =  ( ( ( Re `  C )  x.  ( Re `  B ) )  + 
-u ( ( Im
`  C )  x.  ( Im `  B
) ) ) )
334adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
3433, 8remuld 13958 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( C  x.  B ) )  =  ( ( ( Re
`  C )  x.  ( Re `  B
) )  -  (
( Im `  C
)  x.  ( Im
`  B ) ) ) )
3530, 32, 343eqtr4d 2666 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( Re `  C )  x.  (
Re `  B )
)  +  ( -u ( Im `  C )  x.  ( Im `  B ) ) )  =  ( Re `  ( C  x.  B
) ) )
3635mpteq2dva 4744 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( ( ( Re
`  C )  x.  ( Re `  B
) )  +  (
-u ( Im `  C )  x.  (
Im `  B )
) ) )  =  ( x  e.  A  |->  ( Re `  ( C  x.  B )
) ) )
3725, 36eqtrd 2656 . . 3  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B
) ) )  oF  +  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B ) ) ) )  =  ( x  e.  A  |->  ( Re
`  ( C  x.  B ) ) ) )
388ismbfcn2 23406 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e. MblFn  <->  ( ( x  e.  A  |->  ( Re `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  B ) )  e. MblFn ) ) )
391, 38mpbid 222 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e. MblFn  /\  ( x  e.  A  |->  ( Im `  B
) )  e. MblFn )
)
4039simpld 475 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e. MblFn )
41 eqid 2622 . . . . . 6  |-  ( x  e.  A  |->  ( Re
`  B ) )  =  ( x  e.  A  |->  ( Re `  B ) )
4210, 41fmptd 6385 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) ) : A --> CC )
4340, 5, 42mbfmulc2re 23415 . . . 4  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  e. MblFn )
4439simprd 479 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e. MblFn )
45 eqid 2622 . . . . . 6  |-  ( x  e.  A  |->  ( Im
`  B ) )  =  ( x  e.  A  |->  ( Im `  B ) )
4628, 45fmptd 6385 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) ) : A --> CC )
4744, 18, 46mbfmulc2re 23415 . . . 4  |-  ( ph  ->  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  e. MblFn )
4843, 47mbfadd 23428 . . 3  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B
) ) )  oF  +  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B ) ) ) )  e. MblFn )
4937, 48eqeltrrd 2702 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  ( C  x.  B )
) )  e. MblFn )
50 ovexd 6680 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( Re `  C
)  x.  ( Im
`  B ) )  e.  _V )
51 ovexd 6680 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( Im `  C
)  x.  ( Re
`  B ) )  e.  _V )
523, 6, 20, 14, 23offval2 6914 . . . . 5  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  =  ( x  e.  A  |->  ( ( Re `  C
)  x.  ( Im
`  B ) ) ) )
53 fconstmpt 5163 . . . . . . 7  |-  ( A  X.  { ( Im
`  C ) } )  =  ( x  e.  A  |->  ( Im
`  C ) )
5453a1i 11 . . . . . 6  |-  ( ph  ->  ( A  X.  {
( Im `  C
) } )  =  ( x  e.  A  |->  ( Im `  C
) ) )
553, 26, 9, 54, 15offval2 6914 . . . . 5  |-  ( ph  ->  ( ( A  X.  { ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  =  ( x  e.  A  |->  ( ( Im `  C
)  x.  ( Re
`  B ) ) ) )
563, 50, 51, 52, 55offval2 6914 . . . 4  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B
) ) )  oF  +  ( ( A  X.  { ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B ) ) ) )  =  ( x  e.  A  |->  ( ( ( Re `  C
)  x.  ( Im
`  B ) )  +  ( ( Im
`  C )  x.  ( Re `  B
) ) ) ) )
5733, 8immuld 13959 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  ( C  x.  B ) )  =  ( ( ( Re
`  C )  x.  ( Im `  B
) )  +  ( ( Im `  C
)  x.  ( Re
`  B ) ) ) )
5857mpteq2dva 4744 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  ( C  x.  B )
) )  =  ( x  e.  A  |->  ( ( ( Re `  C )  x.  (
Im `  B )
)  +  ( ( Im `  C )  x.  ( Re `  B ) ) ) ) )
5956, 58eqtr4d 2659 . . 3  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B
) ) )  oF  +  ( ( A  X.  { ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B ) ) ) )  =  ( x  e.  A  |->  ( Im
`  ( C  x.  B ) ) ) )
6044, 5, 46mbfmulc2re 23415 . . . 4  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  e. MblFn )
6140, 17, 42mbfmulc2re 23415 . . . 4  |-  ( ph  ->  ( ( A  X.  { ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  e. MblFn )
6260, 61mbfadd 23428 . . 3  |-  ( ph  ->  ( ( ( A  X.  { ( Re
`  C ) } )  oF  x.  ( x  e.  A  |->  ( Im `  B
) ) )  oF  +  ( ( A  X.  { ( Im `  C ) } )  oF  x.  ( x  e.  A  |->  ( Re `  B ) ) ) )  e. MblFn )
6359, 62eqeltrrd 2702 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  ( C  x.  B )
) )  e. MblFn )
6433, 8mulcld 10060 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( C  x.  B )  e.  CC )
6564ismbfcn2 23406 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  ( C  x.  B ) )  e. MblFn  <->  ( ( x  e.  A  |->  ( Re `  ( C  x.  B )
) )  e. MblFn  /\  (
x  e.  A  |->  ( Im `  ( C  x.  B ) ) )  e. MblFn ) ) )
6649, 63, 65mpbir2and 957 1  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e. MblFn )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   RRcr 9935    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267   Recre 13837   Imcim 13838   volcvol 23232  MblFncmbf 23383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388
This theorem is referenced by:  iblmulc2  23597
  Copyright terms: Public domain W3C validator