MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2lem1 Structured version   Visualization version   GIF version

Theorem ostth2lem1 25307
Description: Lemma for ostth2 25326, although it is just a simple statement about exponentials which does not involve any specifics of ostth2 25326. If a power is upper bounded by a linear term, the exponent must be less than one. Or in big-O notation, 𝑛𝑜(𝐴𝑛) for any 1 < 𝐴. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
ostth2lem1.1 (𝜑𝐴 ∈ ℝ)
ostth2lem1.2 (𝜑𝐵 ∈ ℝ)
ostth2lem1.3 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ≤ (𝑛 · 𝐵))
Assertion
Ref Expression
ostth2lem1 (𝜑𝐴 ≤ 1)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝜑,𝑛

Proof of Theorem ostth2lem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2re 11090 . . . . . 6 2 ∈ ℝ
2 ostth2lem1.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
32adantr 481 . . . . . 6 ((𝜑 ∧ 1 < 𝐴) → 𝐵 ∈ ℝ)
4 remulcl 10021 . . . . . 6 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
51, 3, 4sylancr 695 . . . . 5 ((𝜑 ∧ 1 < 𝐴) → (2 · 𝐵) ∈ ℝ)
6 simpr 477 . . . . . 6 ((𝜑 ∧ 1 < 𝐴) → 1 < 𝐴)
7 1re 10039 . . . . . . 7 1 ∈ ℝ
8 ostth2lem1.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
98adantr 481 . . . . . . 7 ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
10 difrp 11868 . . . . . . 7 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐴 ↔ (𝐴 − 1) ∈ ℝ+))
117, 9, 10sylancr 695 . . . . . 6 ((𝜑 ∧ 1 < 𝐴) → (1 < 𝐴 ↔ (𝐴 − 1) ∈ ℝ+))
126, 11mpbid 222 . . . . 5 ((𝜑 ∧ 1 < 𝐴) → (𝐴 − 1) ∈ ℝ+)
135, 12rerpdivcld 11903 . . . 4 ((𝜑 ∧ 1 < 𝐴) → ((2 · 𝐵) / (𝐴 − 1)) ∈ ℝ)
14 expnbnd 12993 . . . 4 ((((2 · 𝐵) / (𝐴 − 1)) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 < 𝐴) → ∃𝑘 ∈ ℕ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
1513, 9, 6, 14syl3anc 1326 . . 3 ((𝜑 ∧ 1 < 𝐴) → ∃𝑘 ∈ ℕ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
16 nnnn0 11299 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
17 reexpcl 12877 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
189, 16, 17syl2an 494 . . . . 5 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℝ)
1913adantr 481 . . . . 5 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((2 · 𝐵) / (𝐴 − 1)) ∈ ℝ)
2012rpred 11872 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → (𝐴 − 1) ∈ ℝ)
2120adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴 − 1) ∈ ℝ)
22 nnre 11027 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
2322adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
2421, 23remulcld 10070 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · 𝑘) ∈ ℝ)
2524, 18remulcld 10070 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) ∈ ℝ)
268ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
27 2nn 11185 . . . . . . . . . . . 12 2 ∈ ℕ
28 simpr 477 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
29 nnmulcl 11043 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
3027, 28, 29sylancr 695 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
31 nnnn0 11299 . . . . . . . . . . 11 ((2 · 𝑘) ∈ ℕ → (2 · 𝑘) ∈ ℕ0)
3230, 31syl 17 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ0)
3326, 32reexpcld 13025 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) ∈ ℝ)
3430nnred 11035 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℝ)
352ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℝ)
3634, 35remulcld 10070 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · 𝐵) ∈ ℝ)
37 0red 10041 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < 𝐴) → 0 ∈ ℝ)
387a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < 𝐴) → 1 ∈ ℝ)
39 0lt1 10550 . . . . . . . . . . . . . . 15 0 < 1
4039a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ 1 < 𝐴) → 0 < 1)
4137, 38, 9, 40, 6lttrd 10198 . . . . . . . . . . . . 13 ((𝜑 ∧ 1 < 𝐴) → 0 < 𝐴)
429, 41elrpd 11869 . . . . . . . . . . . 12 ((𝜑 ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
43 nnz 11399 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
44 rpexpcl 12879 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝑘 ∈ ℤ) → (𝐴𝑘) ∈ ℝ+)
4542, 43, 44syl2an 494 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℝ+)
46 peano2re 10209 . . . . . . . . . . . . 13 (((𝐴 − 1) · 𝑘) ∈ ℝ → (((𝐴 − 1) · 𝑘) + 1) ∈ ℝ)
4724, 46syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) + 1) ∈ ℝ)
4824ltp1d 10954 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · 𝑘) < (((𝐴 − 1) · 𝑘) + 1))
4916adantl 482 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
5042adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ+)
5150rpge0d 11876 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐴)
52 bernneq2 12991 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ 𝐴) → (((𝐴 − 1) · 𝑘) + 1) ≤ (𝐴𝑘))
5326, 49, 51, 52syl3anc 1326 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) + 1) ≤ (𝐴𝑘))
5424, 47, 18, 48, 53ltletrd 10197 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · 𝑘) < (𝐴𝑘))
5524, 18, 45, 54ltmul1dd 11927 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) < ((𝐴𝑘) · (𝐴𝑘)))
5623recnd 10068 . . . . . . . . . . . . 13 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
57562timesd 11275 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘))
5857oveq2d 6666 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) = (𝐴↑(𝑘 + 𝑘)))
5926recnd 10068 . . . . . . . . . . . 12 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
6059, 49, 49expaddd 13010 . . . . . . . . . . 11 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑘 + 𝑘)) = ((𝐴𝑘) · (𝐴𝑘)))
6158, 60eqtrd 2656 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) = ((𝐴𝑘) · (𝐴𝑘)))
6255, 61breqtrrd 4681 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) < (𝐴↑(2 · 𝑘)))
63 ostth2lem1.3 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ≤ (𝑛 · 𝐵))
6463ralrimiva 2966 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ (𝑛 · 𝐵))
6564ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ (𝑛 · 𝐵))
66 oveq2 6658 . . . . . . . . . . . 12 (𝑛 = (2 · 𝑘) → (𝐴𝑛) = (𝐴↑(2 · 𝑘)))
67 oveq1 6657 . . . . . . . . . . . 12 (𝑛 = (2 · 𝑘) → (𝑛 · 𝐵) = ((2 · 𝑘) · 𝐵))
6866, 67breq12d 4666 . . . . . . . . . . 11 (𝑛 = (2 · 𝑘) → ((𝐴𝑛) ≤ (𝑛 · 𝐵) ↔ (𝐴↑(2 · 𝑘)) ≤ ((2 · 𝑘) · 𝐵)))
6968rspcv 3305 . . . . . . . . . 10 ((2 · 𝑘) ∈ ℕ → (∀𝑛 ∈ ℕ (𝐴𝑛) ≤ (𝑛 · 𝐵) → (𝐴↑(2 · 𝑘)) ≤ ((2 · 𝑘) · 𝐵)))
7030, 65, 69sylc 65 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴↑(2 · 𝑘)) ≤ ((2 · 𝑘) · 𝐵))
7125, 33, 36, 62, 70ltletrd 10197 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · 𝑘) · (𝐴𝑘)) < ((2 · 𝑘) · 𝐵))
7221recnd 10068 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴 − 1) ∈ ℂ)
7318recnd 10068 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
7472, 73, 56mul32d 10246 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) = (((𝐴 − 1) · 𝑘) · (𝐴𝑘)))
75 2cnd 11093 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
7635recnd 10068 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
7775, 76, 56mul32d 10246 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((2 · 𝐵) · 𝑘) = ((2 · 𝑘) · 𝐵))
7871, 74, 773brtr4d 4685 . . . . . . 7 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) < ((2 · 𝐵) · 𝑘))
7921, 18remulcld 10070 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · (𝐴𝑘)) ∈ ℝ)
805adantr 481 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (2 · 𝐵) ∈ ℝ)
81 nngt0 11049 . . . . . . . . 9 (𝑘 ∈ ℕ → 0 < 𝑘)
8281adantl 482 . . . . . . . 8 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 0 < 𝑘)
83 ltmul1 10873 . . . . . . . 8 ((((𝐴 − 1) · (𝐴𝑘)) ∈ ℝ ∧ (2 · 𝐵) ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) < ((2 · 𝐵) · 𝑘)))
8479, 80, 23, 82, 83syl112anc 1330 . . . . . . 7 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (((𝐴 − 1) · (𝐴𝑘)) · 𝑘) < ((2 · 𝐵) · 𝑘)))
8578, 84mpbird 247 . . . . . 6 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵))
8612rpgt0d 11875 . . . . . . . 8 ((𝜑 ∧ 1 < 𝐴) → 0 < (𝐴 − 1))
8786adantr 481 . . . . . . 7 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → 0 < (𝐴 − 1))
88 ltmuldiv2 10897 . . . . . . 7 (((𝐴𝑘) ∈ ℝ ∧ (2 · 𝐵) ∈ ℝ ∧ ((𝐴 − 1) ∈ ℝ ∧ 0 < (𝐴 − 1))) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (𝐴𝑘) < ((2 · 𝐵) / (𝐴 − 1))))
8918, 80, 21, 87, 88syl112anc 1330 . . . . . 6 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝐴 − 1) · (𝐴𝑘)) < (2 · 𝐵) ↔ (𝐴𝑘) < ((2 · 𝐵) / (𝐴 − 1))))
9085, 89mpbid 222 . . . . 5 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) < ((2 · 𝐵) / (𝐴 − 1)))
9118, 19, 90ltnsymd 10186 . . . 4 (((𝜑 ∧ 1 < 𝐴) ∧ 𝑘 ∈ ℕ) → ¬ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
9291nrexdv 3001 . . 3 ((𝜑 ∧ 1 < 𝐴) → ¬ ∃𝑘 ∈ ℕ ((2 · 𝐵) / (𝐴 − 1)) < (𝐴𝑘))
9315, 92pm2.65da 600 . 2 (𝜑 → ¬ 1 < 𝐴)
94 lenlt 10116 . . 3 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ≤ 1 ↔ ¬ 1 < 𝐴))
958, 7, 94sylancl 694 . 2 (𝜑 → (𝐴 ≤ 1 ↔ ¬ 1 < 𝐴))
9693, 95mpbird 247 1 (𝜑𝐴 ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913   class class class wbr 4653  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cz 11377  +crp 11832  cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-seq 12802  df-exp 12861
This theorem is referenced by:  ostth2lem4  25325
  Copyright terms: Public domain W3C validator