| Step | Hyp | Ref
| Expression |
| 1 | | ostth2.4 |
. . . . 5
⊢ 𝑅 = ((log‘(𝐹‘𝑁)) / (log‘𝑁)) |
| 2 | | ostth.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝐴) |
| 3 | | ostth2.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘2)) |
| 4 | | eluz2b2 11761 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) |
| 5 | 3, 4 | sylib 208 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁)) |
| 6 | 5 | simpld 475 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 7 | | nnq 11801 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℚ) |
| 8 | 6, 7 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℚ) |
| 9 | | qabsabv.a |
. . . . . . . . 9
⊢ 𝐴 = (AbsVal‘𝑄) |
| 10 | | qrng.q |
. . . . . . . . . 10
⊢ 𝑄 = (ℂfld
↾s ℚ) |
| 11 | 10 | qrngbas 25308 |
. . . . . . . . 9
⊢ ℚ =
(Base‘𝑄) |
| 12 | 9, 11 | abvcl 18824 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑁 ∈ ℚ) → (𝐹‘𝑁) ∈ ℝ) |
| 13 | 2, 8, 12 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
| 14 | | ostth2.3 |
. . . . . . 7
⊢ (𝜑 → 1 < (𝐹‘𝑁)) |
| 15 | 13, 14 | rplogcld 24375 |
. . . . . 6
⊢ (𝜑 → (log‘(𝐹‘𝑁)) ∈
ℝ+) |
| 16 | 6 | nnred 11035 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 17 | 5 | simprd 479 |
. . . . . . 7
⊢ (𝜑 → 1 < 𝑁) |
| 18 | 16, 17 | rplogcld 24375 |
. . . . . 6
⊢ (𝜑 → (log‘𝑁) ∈
ℝ+) |
| 19 | 15, 18 | rpdivcld 11889 |
. . . . 5
⊢ (𝜑 → ((log‘(𝐹‘𝑁)) / (log‘𝑁)) ∈
ℝ+) |
| 20 | 1, 19 | syl5eqel 2705 |
. . . 4
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
| 21 | 20 | rpred 11872 |
. . 3
⊢ (𝜑 → 𝑅 ∈ ℝ) |
| 22 | 20 | rpgt0d 11875 |
. . 3
⊢ (𝜑 → 0 < 𝑅) |
| 23 | 6 | nnnn0d 11351 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 24 | 10, 9 | qabvle 25314 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐹‘𝑁) ≤ 𝑁) |
| 25 | 2, 23, 24 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑁) ≤ 𝑁) |
| 26 | 6 | nnne0d 11065 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ≠ 0) |
| 27 | 10 | qrng0 25310 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝑄) |
| 28 | 9, 11, 27 | abvgt0 18828 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0) → 0 < (𝐹‘𝑁)) |
| 29 | 2, 8, 26, 28 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < (𝐹‘𝑁)) |
| 30 | 13, 29 | elrpd 11869 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝑁) ∈
ℝ+) |
| 31 | 30 | reeflogd 24370 |
. . . . . . . 8
⊢ (𝜑 →
(exp‘(log‘(𝐹‘𝑁))) = (𝐹‘𝑁)) |
| 32 | 6 | nnrpd 11870 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℝ+) |
| 33 | 32 | reeflogd 24370 |
. . . . . . . 8
⊢ (𝜑 →
(exp‘(log‘𝑁)) =
𝑁) |
| 34 | 25, 31, 33 | 3brtr4d 4685 |
. . . . . . 7
⊢ (𝜑 →
(exp‘(log‘(𝐹‘𝑁))) ≤ (exp‘(log‘𝑁))) |
| 35 | 15 | rpred 11872 |
. . . . . . . 8
⊢ (𝜑 → (log‘(𝐹‘𝑁)) ∈ ℝ) |
| 36 | 32 | relogcld 24369 |
. . . . . . . 8
⊢ (𝜑 → (log‘𝑁) ∈
ℝ) |
| 37 | | efle 14848 |
. . . . . . . 8
⊢
(((log‘(𝐹‘𝑁)) ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) →
((log‘(𝐹‘𝑁)) ≤ (log‘𝑁) ↔
(exp‘(log‘(𝐹‘𝑁))) ≤ (exp‘(log‘𝑁)))) |
| 38 | 35, 36, 37 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → ((log‘(𝐹‘𝑁)) ≤ (log‘𝑁) ↔ (exp‘(log‘(𝐹‘𝑁))) ≤ (exp‘(log‘𝑁)))) |
| 39 | 34, 38 | mpbird 247 |
. . . . . 6
⊢ (𝜑 → (log‘(𝐹‘𝑁)) ≤ (log‘𝑁)) |
| 40 | 18 | rpcnd 11874 |
. . . . . . 7
⊢ (𝜑 → (log‘𝑁) ∈
ℂ) |
| 41 | 40 | mulid1d 10057 |
. . . . . 6
⊢ (𝜑 → ((log‘𝑁) · 1) = (log‘𝑁)) |
| 42 | 39, 41 | breqtrrd 4681 |
. . . . 5
⊢ (𝜑 → (log‘(𝐹‘𝑁)) ≤ ((log‘𝑁) · 1)) |
| 43 | | 1red 10055 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℝ) |
| 44 | 35, 43, 18 | ledivmuld 11925 |
. . . . 5
⊢ (𝜑 → (((log‘(𝐹‘𝑁)) / (log‘𝑁)) ≤ 1 ↔ (log‘(𝐹‘𝑁)) ≤ ((log‘𝑁) · 1))) |
| 45 | 42, 44 | mpbird 247 |
. . . 4
⊢ (𝜑 → ((log‘(𝐹‘𝑁)) / (log‘𝑁)) ≤ 1) |
| 46 | 1, 45 | syl5eqbr 4688 |
. . 3
⊢ (𝜑 → 𝑅 ≤ 1) |
| 47 | | 0xr 10086 |
. . . 4
⊢ 0 ∈
ℝ* |
| 48 | | 1re 10039 |
. . . 4
⊢ 1 ∈
ℝ |
| 49 | | elioc2 12236 |
. . . 4
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ) → (𝑅 ∈ (0(,]1) ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅 ∧ 𝑅 ≤ 1))) |
| 50 | 47, 48, 49 | mp2an 708 |
. . 3
⊢ (𝑅 ∈ (0(,]1) ↔ (𝑅 ∈ ℝ ∧ 0 <
𝑅 ∧ 𝑅 ≤ 1)) |
| 51 | 21, 22, 46, 50 | syl3anbrc 1246 |
. 2
⊢ (𝜑 → 𝑅 ∈ (0(,]1)) |
| 52 | 10, 9 | qabsabv 25318 |
. . . 4
⊢ (abs
↾ ℚ) ∈ 𝐴 |
| 53 | | fvres 6207 |
. . . . . . . 8
⊢ (𝑦 ∈ ℚ → ((abs
↾ ℚ)‘𝑦) =
(abs‘𝑦)) |
| 54 | 53 | oveq1d 6665 |
. . . . . . 7
⊢ (𝑦 ∈ ℚ → (((abs
↾ ℚ)‘𝑦)↑𝑐𝑅) = ((abs‘𝑦)↑𝑐𝑅)) |
| 55 | 54 | mpteq2ia 4740 |
. . . . . 6
⊢ (𝑦 ∈ ℚ ↦ (((abs
↾ ℚ)‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) |
| 56 | 55 | eqcomi 2631 |
. . . . 5
⊢ (𝑦 ∈ ℚ ↦
((abs‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ (((abs ↾
ℚ)‘𝑦)↑𝑐𝑅)) |
| 57 | 9, 11, 56 | abvcxp 25304 |
. . . 4
⊢ (((abs
↾ ℚ) ∈ 𝐴
∧ 𝑅 ∈ (0(,]1))
→ (𝑦 ∈ ℚ
↦ ((abs‘𝑦)↑𝑐𝑅)) ∈ 𝐴) |
| 58 | 52, 51, 57 | sylancr 695 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) ∈ 𝐴) |
| 59 | | eluzelz 11697 |
. . . . . 6
⊢ (𝑧 ∈
(ℤ≥‘2) → 𝑧 ∈ ℤ) |
| 60 | | zq 11794 |
. . . . . 6
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℚ) |
| 61 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (abs‘𝑦) = (abs‘𝑧)) |
| 62 | 61 | oveq1d 6665 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((abs‘𝑦)↑𝑐𝑅) = ((abs‘𝑧)↑𝑐𝑅)) |
| 63 | | eqid 2622 |
. . . . . . 7
⊢ (𝑦 ∈ ℚ ↦
((abs‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) |
| 64 | | ovex 6678 |
. . . . . . 7
⊢
((abs‘𝑧)↑𝑐𝑅) ∈ V |
| 65 | 62, 63, 64 | fvmpt 6282 |
. . . . . 6
⊢ (𝑧 ∈ ℚ → ((𝑦 ∈ ℚ ↦
((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅)) |
| 66 | 59, 60, 65 | 3syl 18 |
. . . . 5
⊢ (𝑧 ∈
(ℤ≥‘2) → ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅)) |
| 67 | 66 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ ((𝑦 ∈ ℚ
↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅)) |
| 68 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 𝑧 ∈
(ℤ≥‘2)) |
| 69 | | eluz2b2 11761 |
. . . . . . . . 9
⊢ (𝑧 ∈
(ℤ≥‘2) ↔ (𝑧 ∈ ℕ ∧ 1 < 𝑧)) |
| 70 | 68, 69 | sylib 208 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (𝑧 ∈ ℕ
∧ 1 < 𝑧)) |
| 71 | 70 | simpld 475 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 𝑧 ∈
ℕ) |
| 72 | 71 | nnred 11035 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 𝑧 ∈
ℝ) |
| 73 | 71 | nnnn0d 11351 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 𝑧 ∈
ℕ0) |
| 74 | 73 | nn0ge0d 11354 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 0 ≤ 𝑧) |
| 75 | 72, 74 | absidd 14161 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (abs‘𝑧) =
𝑧) |
| 76 | 75 | oveq1d 6665 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ ((abs‘𝑧)↑𝑐𝑅) = (𝑧↑𝑐𝑅)) |
| 77 | 72 | recnd 10068 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 𝑧 ∈
ℂ) |
| 78 | 71 | nnne0d 11065 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 𝑧 ≠
0) |
| 79 | 20 | rpcnd 11874 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ ℂ) |
| 80 | 79 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 𝑅 ∈
ℂ) |
| 81 | 77, 78, 80 | cxpefd 24458 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (𝑧↑𝑐𝑅) = (exp‘(𝑅 · (log‘𝑧)))) |
| 82 | | padic.j |
. . . . . . . . . . 11
⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) |
| 83 | | ostth.k |
. . . . . . . . . . 11
⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) |
| 84 | 2 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 𝐹 ∈ 𝐴) |
| 85 | 3 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 𝑁 ∈
(ℤ≥‘2)) |
| 86 | 14 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 1 < (𝐹‘𝑁)) |
| 87 | | eqid 2622 |
. . . . . . . . . . 11
⊢
((log‘(𝐹‘𝑧)) / (log‘𝑧)) = ((log‘(𝐹‘𝑧)) / (log‘𝑧)) |
| 88 | | eqid 2622 |
. . . . . . . . . . 11
⊢ if((𝐹‘𝑧) ≤ 1, 1, (𝐹‘𝑧)) = if((𝐹‘𝑧) ≤ 1, 1, (𝐹‘𝑧)) |
| 89 | | eqid 2622 |
. . . . . . . . . . 11
⊢
((log‘𝑁) /
(log‘𝑧)) =
((log‘𝑁) /
(log‘𝑧)) |
| 90 | 10, 9, 82, 83, 84, 85, 86, 1, 68, 87, 88, 89 | ostth2lem4 25325 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (1 < (𝐹‘𝑧) ∧ 𝑅 ≤ ((log‘(𝐹‘𝑧)) / (log‘𝑧)))) |
| 91 | 90 | simprd 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 𝑅 ≤
((log‘(𝐹‘𝑧)) / (log‘𝑧))) |
| 92 | 90 | simpld 475 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 1 < (𝐹‘𝑧)) |
| 93 | | eqid 2622 |
. . . . . . . . . . 11
⊢ if((𝐹‘𝑁) ≤ 1, 1, (𝐹‘𝑁)) = if((𝐹‘𝑁) ≤ 1, 1, (𝐹‘𝑁)) |
| 94 | | eqid 2622 |
. . . . . . . . . . 11
⊢
((log‘𝑧) /
(log‘𝑁)) =
((log‘𝑧) /
(log‘𝑁)) |
| 95 | 10, 9, 82, 83, 84, 68, 92, 87, 85, 1, 93, 94 | ostth2lem4 25325 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (1 < (𝐹‘𝑁) ∧ ((log‘(𝐹‘𝑧)) / (log‘𝑧)) ≤ 𝑅)) |
| 96 | 95 | simprd 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ ((log‘(𝐹‘𝑧)) / (log‘𝑧)) ≤ 𝑅) |
| 97 | 21 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 𝑅 ∈
ℝ) |
| 98 | 59 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 𝑧 ∈
ℤ) |
| 99 | 98, 60 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 𝑧 ∈
ℚ) |
| 100 | 9, 11 | abvcl 18824 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑧 ∈ ℚ) → (𝐹‘𝑧) ∈ ℝ) |
| 101 | 84, 99, 100 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (𝐹‘𝑧) ∈
ℝ) |
| 102 | 9, 11, 27 | abvgt0 18828 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ 𝐴 ∧ 𝑧 ∈ ℚ ∧ 𝑧 ≠ 0) → 0 < (𝐹‘𝑧)) |
| 103 | 84, 99, 78, 102 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 0 < (𝐹‘𝑧)) |
| 104 | 101, 103 | elrpd 11869 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (𝐹‘𝑧) ∈
ℝ+) |
| 105 | 104 | relogcld 24369 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (log‘(𝐹‘𝑧)) ∈ ℝ) |
| 106 | 71 | nnrpd 11870 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 𝑧 ∈
ℝ+) |
| 107 | 106 | relogcld 24369 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (log‘𝑧) ∈
ℝ) |
| 108 | | ef0 14821 |
. . . . . . . . . . . . . 14
⊢
(exp‘0) = 1 |
| 109 | 70 | simprd 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 1 < 𝑧) |
| 110 | 106 | reeflogd 24370 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (exp‘(log‘𝑧)) = 𝑧) |
| 111 | 109, 110 | breqtrrd 4681 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 1 < (exp‘(log‘𝑧))) |
| 112 | 108, 111 | syl5eqbr 4688 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (exp‘0) < (exp‘(log‘𝑧))) |
| 113 | | 0re 10040 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ |
| 114 | | eflt 14847 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ (log‘𝑧) ∈ ℝ) → (0 <
(log‘𝑧) ↔
(exp‘0) < (exp‘(log‘𝑧)))) |
| 115 | 113, 107,
114 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (0 < (log‘𝑧) ↔ (exp‘0) <
(exp‘(log‘𝑧)))) |
| 116 | 112, 115 | mpbird 247 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 0 < (log‘𝑧)) |
| 117 | 116 | gt0ne0d 10592 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (log‘𝑧) ≠
0) |
| 118 | 105, 107,
117 | redivcld 10853 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ ((log‘(𝐹‘𝑧)) / (log‘𝑧)) ∈ ℝ) |
| 119 | 97, 118 | letri3d 10179 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (𝑅 =
((log‘(𝐹‘𝑧)) / (log‘𝑧)) ↔ (𝑅 ≤ ((log‘(𝐹‘𝑧)) / (log‘𝑧)) ∧ ((log‘(𝐹‘𝑧)) / (log‘𝑧)) ≤ 𝑅))) |
| 120 | 91, 96, 119 | mpbir2and 957 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ 𝑅 =
((log‘(𝐹‘𝑧)) / (log‘𝑧))) |
| 121 | 120 | oveq1d 6665 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (𝑅 ·
(log‘𝑧)) =
(((log‘(𝐹‘𝑧)) / (log‘𝑧)) · (log‘𝑧))) |
| 122 | 105 | recnd 10068 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (log‘(𝐹‘𝑧)) ∈ ℂ) |
| 123 | 107 | recnd 10068 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (log‘𝑧) ∈
ℂ) |
| 124 | 122, 123,
117 | divcan1d 10802 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (((log‘(𝐹‘𝑧)) / (log‘𝑧)) · (log‘𝑧)) = (log‘(𝐹‘𝑧))) |
| 125 | 121, 124 | eqtrd 2656 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (𝑅 ·
(log‘𝑧)) =
(log‘(𝐹‘𝑧))) |
| 126 | 125 | fveq2d 6195 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (exp‘(𝑅
· (log‘𝑧))) =
(exp‘(log‘(𝐹‘𝑧)))) |
| 127 | 104 | reeflogd 24370 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (exp‘(log‘(𝐹‘𝑧))) = (𝐹‘𝑧)) |
| 128 | 81, 126, 127 | 3eqtrd 2660 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (𝑧↑𝑐𝑅) = (𝐹‘𝑧)) |
| 129 | 67, 76, 128 | 3eqtrrd 2661 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘2))
→ (𝐹‘𝑧) = ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧)) |
| 130 | 10, 9, 2, 58, 129 | ostthlem1 25316 |
. 2
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))) |
| 131 | | oveq2 6658 |
. . . . 5
⊢ (𝑎 = 𝑅 → ((abs‘𝑦)↑𝑐𝑎) = ((abs‘𝑦)↑𝑐𝑅)) |
| 132 | 131 | mpteq2dv 4745 |
. . . 4
⊢ (𝑎 = 𝑅 → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))) |
| 133 | 132 | eqeq2d 2632 |
. . 3
⊢ (𝑎 = 𝑅 → (𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ↔ 𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)))) |
| 134 | 133 | rspcev 3309 |
. 2
⊢ ((𝑅 ∈ (0(,]1) ∧ 𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))) → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎))) |
| 135 | 51, 130, 134 | syl2anc 693 |
1
⊢ (𝜑 → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎))) |