MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolctb Structured version   Visualization version   GIF version

Theorem ovolctb 23258
Description: The volume of a denumerable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
ovolctb ((𝐴 ⊆ ℝ ∧ 𝐴 ≈ ℕ) → (vol*‘𝐴) = 0)

Proof of Theorem ovolctb
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensym 8005 . 2 (𝐴 ≈ ℕ → ℕ ≈ 𝐴)
2 bren 7964 . . . 4 (ℕ ≈ 𝐴 ↔ ∃𝑓 𝑓:ℕ–1-1-onto𝐴)
3 simpll 790 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → 𝐴 ⊆ ℝ)
4 f1of 6137 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ⟶𝐴)
54adantl 482 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ⟶𝐴)
65ffvelrnda 6359 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ∈ 𝐴)
73, 6sseldd 3604 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ∈ ℝ)
87leidd 10594 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ≤ (𝑓𝑥))
9 df-br 4654 . . . . . . . . . . . . 13 ((𝑓𝑥) ≤ (𝑓𝑥) ↔ ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ ≤ )
108, 9sylib 208 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ ≤ )
11 opelxpi 5148 . . . . . . . . . . . . 13 (((𝑓𝑥) ∈ ℝ ∧ (𝑓𝑥) ∈ ℝ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ (ℝ × ℝ))
127, 7, 11syl2anc 693 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ (ℝ × ℝ))
1310, 12elind 3798 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
14 df-ov 6653 . . . . . . . . . . . . 13 ((𝑓𝑥) I (𝑓𝑥)) = ( I ‘⟨(𝑓𝑥), (𝑓𝑥)⟩)
15 opex 4932 . . . . . . . . . . . . . 14 ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ V
16 fvi 6255 . . . . . . . . . . . . . 14 (⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ V → ( I ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
1715, 16ax-mp 5 . . . . . . . . . . . . 13 ( I ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = ⟨(𝑓𝑥), (𝑓𝑥)⟩
1814, 17eqtri 2644 . . . . . . . . . . . 12 ((𝑓𝑥) I (𝑓𝑥)) = ⟨(𝑓𝑥), (𝑓𝑥)⟩
1918mpteq2i 4741 . . . . . . . . . . 11 (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))) = (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)
2013, 19fmptd 6385 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
21 nnex 11026 . . . . . . . . . . . . 13 ℕ ∈ V
2221a1i 11 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ℕ ∈ V)
237recnd 10068 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ∈ ℂ)
245feqmptd 6249 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓 = (𝑥 ∈ ℕ ↦ (𝑓𝑥)))
2522, 23, 23, 24, 24offval2 6914 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓𝑓 I 𝑓) = (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))))
2625feq1d 6030 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((𝑓𝑓 I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ↔ (𝑥 ∈ ℕ ↦ ((𝑓𝑥) I (𝑓𝑥))):ℕ⟶( ≤ ∩ (ℝ × ℝ))))
2720, 26mpbird 247 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓𝑓 I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
28 f1ofo 6144 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–1-1-onto𝐴𝑓:ℕ–onto𝐴)
2928adantl 482 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓:ℕ–onto𝐴)
30 forn 6118 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto𝐴 → ran 𝑓 = 𝐴)
3129, 30syl 17 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ran 𝑓 = 𝐴)
3231eleq2d 2687 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦 ∈ ran 𝑓𝑦𝐴))
33 f1ofn 6138 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto𝐴𝑓 Fn ℕ)
3433adantl 482 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝑓 Fn ℕ)
35 fvelrnb 6243 . . . . . . . . . . . . . 14 (𝑓 Fn ℕ → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦))
3634, 35syl 17 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦 ∈ ran 𝑓 ↔ ∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦))
3732, 36bitr3d 270 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦𝐴 ↔ ∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦))
3825, 19syl6eq 2672 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑓𝑓 I 𝑓) = (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩))
3938fveq1d 6193 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((𝑓𝑓 I 𝑓)‘𝑥) = ((𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)‘𝑥))
40 eqid 2622 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩) = (𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)
4140fvmpt2 6291 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℕ ∧ ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ V) → ((𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)‘𝑥) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
4215, 41mpan2 707 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℕ → ((𝑥 ∈ ℕ ↦ ⟨(𝑓𝑥), (𝑓𝑥)⟩)‘𝑥) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
4339, 42sylan9eq 2676 . . . . . . . . . . . . . . . . . 18 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓𝑓 I 𝑓)‘𝑥) = ⟨(𝑓𝑥), (𝑓𝑥)⟩)
4443fveq2d 6195 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (1st ‘((𝑓𝑓 I 𝑓)‘𝑥)) = (1st ‘⟨(𝑓𝑥), (𝑓𝑥)⟩))
45 fvex 6201 . . . . . . . . . . . . . . . . . 18 (𝑓𝑥) ∈ V
4645, 45op1st 7176 . . . . . . . . . . . . . . . . 17 (1st ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = (𝑓𝑥)
4744, 46syl6eq 2672 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (1st ‘((𝑓𝑓 I 𝑓)‘𝑥)) = (𝑓𝑥))
4847, 8eqbrtrd 4675 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (1st ‘((𝑓𝑓 I 𝑓)‘𝑥)) ≤ (𝑓𝑥))
4943fveq2d 6195 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (2nd ‘((𝑓𝑓 I 𝑓)‘𝑥)) = (2nd ‘⟨(𝑓𝑥), (𝑓𝑥)⟩))
5045, 45op2nd 7177 . . . . . . . . . . . . . . . . 17 (2nd ‘⟨(𝑓𝑥), (𝑓𝑥)⟩) = (𝑓𝑥)
5149, 50syl6eq 2672 . . . . . . . . . . . . . . . 16 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (2nd ‘((𝑓𝑓 I 𝑓)‘𝑥)) = (𝑓𝑥))
528, 51breqtrrd 4681 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → (𝑓𝑥) ≤ (2nd ‘((𝑓𝑓 I 𝑓)‘𝑥)))
5348, 52jca 554 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((1st ‘((𝑓𝑓 I 𝑓)‘𝑥)) ≤ (𝑓𝑥) ∧ (𝑓𝑥) ≤ (2nd ‘((𝑓𝑓 I 𝑓)‘𝑥))))
54 breq2 4657 . . . . . . . . . . . . . . 15 ((𝑓𝑥) = 𝑦 → ((1st ‘((𝑓𝑓 I 𝑓)‘𝑥)) ≤ (𝑓𝑥) ↔ (1st ‘((𝑓𝑓 I 𝑓)‘𝑥)) ≤ 𝑦))
55 breq1 4656 . . . . . . . . . . . . . . 15 ((𝑓𝑥) = 𝑦 → ((𝑓𝑥) ≤ (2nd ‘((𝑓𝑓 I 𝑓)‘𝑥)) ↔ 𝑦 ≤ (2nd ‘((𝑓𝑓 I 𝑓)‘𝑥))))
5654, 55anbi12d 747 . . . . . . . . . . . . . 14 ((𝑓𝑥) = 𝑦 → (((1st ‘((𝑓𝑓 I 𝑓)‘𝑥)) ≤ (𝑓𝑥) ∧ (𝑓𝑥) ≤ (2nd ‘((𝑓𝑓 I 𝑓)‘𝑥))) ↔ ((1st ‘((𝑓𝑓 I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓𝑓 I 𝑓)‘𝑥)))))
5753, 56syl5ibcom 235 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓𝑥) = 𝑦 → ((1st ‘((𝑓𝑓 I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓𝑓 I 𝑓)‘𝑥)))))
5857reximdva 3017 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (∃𝑥 ∈ ℕ (𝑓𝑥) = 𝑦 → ∃𝑥 ∈ ℕ ((1st ‘((𝑓𝑓 I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓𝑓 I 𝑓)‘𝑥)))))
5937, 58sylbid 230 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑦𝐴 → ∃𝑥 ∈ ℕ ((1st ‘((𝑓𝑓 I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓𝑓 I 𝑓)‘𝑥)))))
6059ralrimiv 2965 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ∀𝑦𝐴𝑥 ∈ ℕ ((1st ‘((𝑓𝑓 I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓𝑓 I 𝑓)‘𝑥))))
61 ovolficc 23237 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ (𝑓𝑓 I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ (𝑓𝑓 I 𝑓)) ↔ ∀𝑦𝐴𝑥 ∈ ℕ ((1st ‘((𝑓𝑓 I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓𝑓 I 𝑓)‘𝑥)))))
6227, 61syldan 487 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝐴 ran ([,] ∘ (𝑓𝑓 I 𝑓)) ↔ ∀𝑦𝐴𝑥 ∈ ℕ ((1st ‘((𝑓𝑓 I 𝑓)‘𝑥)) ≤ 𝑦𝑦 ≤ (2nd ‘((𝑓𝑓 I 𝑓)‘𝑥)))))
6360, 62mpbird 247 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 𝐴 ran ([,] ∘ (𝑓𝑓 I 𝑓)))
64 eqid 2622 . . . . . . . . . 10 seq1( + , ((abs ∘ − ) ∘ (𝑓𝑓 I 𝑓))) = seq1( + , ((abs ∘ − ) ∘ (𝑓𝑓 I 𝑓)))
6564ovollb2 23257 . . . . . . . . 9 (((𝑓𝑓 I 𝑓):ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ (𝑓𝑓 I 𝑓))) → (vol*‘𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓𝑓 I 𝑓))), ℝ*, < ))
6627, 63, 65syl2anc 693 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓𝑓 I 𝑓))), ℝ*, < ))
67 opelxpi 5148 . . . . . . . . . . . . . . . . . 18 (((𝑓𝑥) ∈ ℂ ∧ (𝑓𝑥) ∈ ℂ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ (ℂ × ℂ))
6823, 23, 67syl2anc 693 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ⟨(𝑓𝑥), (𝑓𝑥)⟩ ∈ (ℂ × ℂ))
69 absf 14077 . . . . . . . . . . . . . . . . . . . 20 abs:ℂ⟶ℝ
70 subf 10283 . . . . . . . . . . . . . . . . . . . 20 − :(ℂ × ℂ)⟶ℂ
71 fco 6058 . . . . . . . . . . . . . . . . . . . 20 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
7269, 70, 71mp2an 708 . . . . . . . . . . . . . . . . . . 19 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
7372a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
7473feqmptd 6249 . . . . . . . . . . . . . . . . 17 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (abs ∘ − ) = (𝑦 ∈ (ℂ × ℂ) ↦ ((abs ∘ − )‘𝑦)))
75 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨(𝑓𝑥), (𝑓𝑥)⟩ → ((abs ∘ − )‘𝑦) = ((abs ∘ − )‘⟨(𝑓𝑥), (𝑓𝑥)⟩))
76 df-ov 6653 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)) = ((abs ∘ − )‘⟨(𝑓𝑥), (𝑓𝑥)⟩)
7775, 76syl6eqr 2674 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨(𝑓𝑥), (𝑓𝑥)⟩ → ((abs ∘ − )‘𝑦) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)))
7868, 38, 74, 77fmptco 6396 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((abs ∘ − ) ∘ (𝑓𝑓 I 𝑓)) = (𝑥 ∈ ℕ ↦ ((𝑓𝑥)(abs ∘ − )(𝑓𝑥))))
79 cnmet 22575 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) ∈ (Met‘ℂ)
80 met0 22148 . . . . . . . . . . . . . . . . . 18 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ (𝑓𝑥) ∈ ℂ) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)) = 0)
8179, 23, 80sylancr 695 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) ∧ 𝑥 ∈ ℕ) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑥)) = 0)
8281mpteq2dva 4744 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (𝑥 ∈ ℕ ↦ ((𝑓𝑥)(abs ∘ − )(𝑓𝑥))) = (𝑥 ∈ ℕ ↦ 0))
8378, 82eqtrd 2656 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((abs ∘ − ) ∘ (𝑓𝑓 I 𝑓)) = (𝑥 ∈ ℕ ↦ 0))
84 fconstmpt 5163 . . . . . . . . . . . . . . 15 (ℕ × {0}) = (𝑥 ∈ ℕ ↦ 0)
8583, 84syl6eqr 2674 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((abs ∘ − ) ∘ (𝑓𝑓 I 𝑓)) = (ℕ × {0}))
8685seqeq3d 12809 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → seq1( + , ((abs ∘ − ) ∘ (𝑓𝑓 I 𝑓))) = seq1( + , (ℕ × {0})))
87 1z 11407 . . . . . . . . . . . . . 14 1 ∈ ℤ
88 nnuz 11723 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
8988ser0f 12854 . . . . . . . . . . . . . 14 (1 ∈ ℤ → seq1( + , (ℕ × {0})) = (ℕ × {0}))
9087, 89ax-mp 5 . . . . . . . . . . . . 13 seq1( + , (ℕ × {0})) = (ℕ × {0})
9186, 90syl6eq 2672 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → seq1( + , ((abs ∘ − ) ∘ (𝑓𝑓 I 𝑓))) = (ℕ × {0}))
9291rneqd 5353 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ran seq1( + , ((abs ∘ − ) ∘ (𝑓𝑓 I 𝑓))) = ran (ℕ × {0}))
93 1nn 11031 . . . . . . . . . . . 12 1 ∈ ℕ
94 ne0i 3921 . . . . . . . . . . . 12 (1 ∈ ℕ → ℕ ≠ ∅)
95 rnxp 5564 . . . . . . . . . . . 12 (ℕ ≠ ∅ → ran (ℕ × {0}) = {0})
9693, 94, 95mp2b 10 . . . . . . . . . . 11 ran (ℕ × {0}) = {0}
9792, 96syl6eq 2672 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ran seq1( + , ((abs ∘ − ) ∘ (𝑓𝑓 I 𝑓))) = {0})
9897supeq1d 8352 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓𝑓 I 𝑓))), ℝ*, < ) = sup({0}, ℝ*, < ))
99 xrltso 11974 . . . . . . . . . 10 < Or ℝ*
100 0xr 10086 . . . . . . . . . 10 0 ∈ ℝ*
101 supsn 8378 . . . . . . . . . 10 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
10299, 100, 101mp2an 708 . . . . . . . . 9 sup({0}, ℝ*, < ) = 0
10398, 102syl6eq 2672 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑓𝑓 I 𝑓))), ℝ*, < ) = 0)
10466, 103breqtrd 4679 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) ≤ 0)
105 ovolge0 23249 . . . . . . . 8 (𝐴 ⊆ ℝ → 0 ≤ (vol*‘𝐴))
106105adantr 481 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → 0 ≤ (vol*‘𝐴))
107 ovolcl 23246 . . . . . . . . 9 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
108107adantr 481 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) ∈ ℝ*)
109 xrletri3 11985 . . . . . . . 8 (((vol*‘𝐴) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol*‘𝐴) = 0 ↔ ((vol*‘𝐴) ≤ 0 ∧ 0 ≤ (vol*‘𝐴))))
110108, 100, 109sylancl 694 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → ((vol*‘𝐴) = 0 ↔ ((vol*‘𝐴) ≤ 0 ∧ 0 ≤ (vol*‘𝐴))))
111104, 106, 110mpbir2and 957 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑓:ℕ–1-1-onto𝐴) → (vol*‘𝐴) = 0)
112111ex 450 . . . . 5 (𝐴 ⊆ ℝ → (𝑓:ℕ–1-1-onto𝐴 → (vol*‘𝐴) = 0))
113112exlimdv 1861 . . . 4 (𝐴 ⊆ ℝ → (∃𝑓 𝑓:ℕ–1-1-onto𝐴 → (vol*‘𝐴) = 0))
1142, 113syl5bi 232 . . 3 (𝐴 ⊆ ℝ → (ℕ ≈ 𝐴 → (vol*‘𝐴) = 0))
115114imp 445 . 2 ((𝐴 ⊆ ℝ ∧ ℕ ≈ 𝐴) → (vol*‘𝐴) = 0)
1161, 115sylan2 491 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≈ ℕ) → (vol*‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cin 3573  wss 3574  c0 3915  {csn 4177  cop 4183   cuni 4436   class class class wbr 4653  cmpt 4729   I cid 5023   Or wor 5034   × cxp 5112  ran crn 5115  ccom 5118   Fn wfn 5883  wf 5884  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  𝑓 cof 6895  1st c1st 7166  2nd c2nd 7167  cen 7952  supcsup 8346  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  cmin 10266  cn 11020  cz 11377  [,]cicc 12178  seqcseq 12801  abscabs 13974  Metcme 19732  vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233
This theorem is referenced by:  ovolq  23259  ovolctb2  23260  ovoliunnfl  33451
  Copyright terms: Public domain W3C validator