MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem4 Structured version   Visualization version   Unicode version

Theorem pgpfac1lem4 18477
Description: Lemma for pgpfac1 18479. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
pgpfac1.s  |-  S  =  ( K `  { A } )
pgpfac1.b  |-  B  =  ( Base `  G
)
pgpfac1.o  |-  O  =  ( od `  G
)
pgpfac1.e  |-  E  =  (gEx `  G )
pgpfac1.z  |-  .0.  =  ( 0g `  G )
pgpfac1.l  |-  .(+)  =  (
LSSum `  G )
pgpfac1.p  |-  ( ph  ->  P pGrp  G )
pgpfac1.g  |-  ( ph  ->  G  e.  Abel )
pgpfac1.n  |-  ( ph  ->  B  e.  Fin )
pgpfac1.oe  |-  ( ph  ->  ( O `  A
)  =  E )
pgpfac1.u  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
pgpfac1.au  |-  ( ph  ->  A  e.  U )
pgpfac1.w  |-  ( ph  ->  W  e.  (SubGrp `  G ) )
pgpfac1.i  |-  ( ph  ->  ( S  i^i  W
)  =  {  .0.  } )
pgpfac1.ss  |-  ( ph  ->  ( S  .(+)  W ) 
C_  U )
pgpfac1.2  |-  ( ph  ->  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  ( S  .(+)  W )  C.  w )
)
pgpfac1.c  |-  ( ph  ->  C  e.  ( U 
\  ( S  .(+)  W ) ) )
pgpfac1.mg  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
pgpfac1lem4  |-  ( ph  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) )
Distinct variable groups:    t,  .0.    w, t, A    t,  .(+) , w   
t, P, w    t, B    t, G, w    t, U, w    t, C, w   
t, S, w    t, W, w    ph, t, w   
t,  .x. , w    t, K, w
Allowed substitution hints:    B( w)    E( w, t)    O( w, t)    .0. ( w)

Proof of Theorem pgpfac1lem4
Dummy variables  k 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.k . . . . . . . 8  |-  K  =  (mrCls `  (SubGrp `  G
) )
2 pgpfac1.s . . . . . . . 8  |-  S  =  ( K `  { A } )
3 pgpfac1.b . . . . . . . 8  |-  B  =  ( Base `  G
)
4 pgpfac1.o . . . . . . . 8  |-  O  =  ( od `  G
)
5 pgpfac1.e . . . . . . . 8  |-  E  =  (gEx `  G )
6 pgpfac1.z . . . . . . . 8  |-  .0.  =  ( 0g `  G )
7 pgpfac1.l . . . . . . . 8  |-  .(+)  =  (
LSSum `  G )
8 pgpfac1.p . . . . . . . 8  |-  ( ph  ->  P pGrp  G )
9 pgpfac1.g . . . . . . . 8  |-  ( ph  ->  G  e.  Abel )
10 pgpfac1.n . . . . . . . 8  |-  ( ph  ->  B  e.  Fin )
11 pgpfac1.oe . . . . . . . 8  |-  ( ph  ->  ( O `  A
)  =  E )
12 pgpfac1.u . . . . . . . 8  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
13 pgpfac1.au . . . . . . . 8  |-  ( ph  ->  A  e.  U )
14 pgpfac1.w . . . . . . . 8  |-  ( ph  ->  W  e.  (SubGrp `  G ) )
15 pgpfac1.i . . . . . . . 8  |-  ( ph  ->  ( S  i^i  W
)  =  {  .0.  } )
16 pgpfac1.ss . . . . . . . 8  |-  ( ph  ->  ( S  .(+)  W ) 
C_  U )
17 pgpfac1.2 . . . . . . . 8  |-  ( ph  ->  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  ( S  .(+)  W )  C.  w )
)
18 pgpfac1.c . . . . . . . 8  |-  ( ph  ->  C  e.  ( U 
\  ( S  .(+)  W ) ) )
19 pgpfac1.mg . . . . . . . 8  |-  .x.  =  (.g
`  G )
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19pgpfac1lem2 18474 . . . . . . 7  |-  ( ph  ->  ( P  .x.  C
)  e.  ( S 
.(+)  W ) )
21 ablgrp 18198 . . . . . . . . . . . 12  |-  ( G  e.  Abel  ->  G  e. 
Grp )
229, 21syl 17 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  Grp )
233subgacs 17629 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  B ) )
24 acsmre 16313 . . . . . . . . . . 11  |-  ( (SubGrp `  G )  e.  (ACS
`  B )  -> 
(SubGrp `  G )  e.  (Moore `  B )
)
2522, 23, 243syl 18 . . . . . . . . . 10  |-  ( ph  ->  (SubGrp `  G )  e.  (Moore `  B )
)
263subgss 17595 . . . . . . . . . . . 12  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  B
)
2712, 26syl 17 . . . . . . . . . . 11  |-  ( ph  ->  U  C_  B )
2827, 13sseldd 3604 . . . . . . . . . 10  |-  ( ph  ->  A  e.  B )
291mrcsncl 16272 . . . . . . . . . 10  |-  ( ( (SubGrp `  G )  e.  (Moore `  B )  /\  A  e.  B
)  ->  ( K `  { A } )  e.  (SubGrp `  G
) )
3025, 28, 29syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( K `  { A } )  e.  (SubGrp `  G ) )
312, 30syl5eqel 2705 . . . . . . . 8  |-  ( ph  ->  S  e.  (SubGrp `  G ) )
327lsmcom 18261 . . . . . . . 8  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )  /\  W  e.  (SubGrp `  G ) )  -> 
( S  .(+)  W )  =  ( W  .(+)  S ) )
339, 31, 14, 32syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( S  .(+)  W )  =  ( W  .(+)  S ) )
3420, 33eleqtrd 2703 . . . . . 6  |-  ( ph  ->  ( P  .x.  C
)  e.  ( W 
.(+)  S ) )
35 eqid 2622 . . . . . . 7  |-  ( -g `  G )  =  (
-g `  G )
3635, 7, 14, 31lsmelvalm 18066 . . . . . 6  |-  ( ph  ->  ( ( P  .x.  C )  e.  ( W  .(+)  S )  <->  E. w  e.  W  E. s  e.  S  ( P  .x.  C )  =  ( w ( -g `  G ) s ) ) )
3734, 36mpbid 222 . . . . 5  |-  ( ph  ->  E. w  e.  W  E. s  e.  S  ( P  .x.  C )  =  ( w (
-g `  G )
s ) )
38 eqid 2622 . . . . . . . . . . 11  |-  ( k  e.  ZZ  |->  ( k 
.x.  A ) )  =  ( k  e.  ZZ  |->  ( k  .x.  A ) )
393, 19, 38, 1cycsubg2 17631 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  A  e.  B )  ->  ( K `  { A } )  =  ran  ( k  e.  ZZ  |->  ( k  .x.  A
) ) )
4022, 28, 39syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( K `  { A } )  =  ran  ( k  e.  ZZ  |->  ( k  .x.  A
) ) )
412, 40syl5eq 2668 . . . . . . . 8  |-  ( ph  ->  S  =  ran  (
k  e.  ZZ  |->  ( k  .x.  A ) ) )
4241rexeqdv 3145 . . . . . . 7  |-  ( ph  ->  ( E. s  e.  S  ( P  .x.  C )  =  ( w ( -g `  G
) s )  <->  E. s  e.  ran  ( k  e.  ZZ  |->  ( k  .x.  A ) ) ( P  .x.  C )  =  ( w (
-g `  G )
s ) ) )
43 ovex 6678 . . . . . . . . 9  |-  ( k 
.x.  A )  e. 
_V
4443rgenw 2924 . . . . . . . 8  |-  A. k  e.  ZZ  ( k  .x.  A )  e.  _V
45 oveq2 6658 . . . . . . . . . 10  |-  ( s  =  ( k  .x.  A )  ->  (
w ( -g `  G
) s )  =  ( w ( -g `  G ) ( k 
.x.  A ) ) )
4645eqeq2d 2632 . . . . . . . . 9  |-  ( s  =  ( k  .x.  A )  ->  (
( P  .x.  C
)  =  ( w ( -g `  G
) s )  <->  ( P  .x.  C )  =  ( w ( -g `  G
) ( k  .x.  A ) ) ) )
4738, 46rexrnmpt 6369 . . . . . . . 8  |-  ( A. k  e.  ZZ  (
k  .x.  A )  e.  _V  ->  ( E. s  e.  ran  ( k  e.  ZZ  |->  ( k 
.x.  A ) ) ( P  .x.  C
)  =  ( w ( -g `  G
) s )  <->  E. k  e.  ZZ  ( P  .x.  C )  =  ( w ( -g `  G
) ( k  .x.  A ) ) ) )
4844, 47ax-mp 5 . . . . . . 7  |-  ( E. s  e.  ran  (
k  e.  ZZ  |->  ( k  .x.  A ) ) ( P  .x.  C )  =  ( w ( -g `  G
) s )  <->  E. k  e.  ZZ  ( P  .x.  C )  =  ( w ( -g `  G
) ( k  .x.  A ) ) )
4942, 48syl6bb 276 . . . . . 6  |-  ( ph  ->  ( E. s  e.  S  ( P  .x.  C )  =  ( w ( -g `  G
) s )  <->  E. k  e.  ZZ  ( P  .x.  C )  =  ( w ( -g `  G
) ( k  .x.  A ) ) ) )
5049rexbidv 3052 . . . . 5  |-  ( ph  ->  ( E. w  e.  W  E. s  e.  S  ( P  .x.  C )  =  ( w ( -g `  G
) s )  <->  E. w  e.  W  E. k  e.  ZZ  ( P  .x.  C )  =  ( w ( -g `  G
) ( k  .x.  A ) ) ) )
5137, 50mpbid 222 . . . 4  |-  ( ph  ->  E. w  e.  W  E. k  e.  ZZ  ( P  .x.  C )  =  ( w (
-g `  G )
( k  .x.  A
) ) )
52 rexcom 3099 . . . 4  |-  ( E. w  e.  W  E. k  e.  ZZ  ( P  .x.  C )  =  ( w ( -g `  G ) ( k 
.x.  A ) )  <->  E. k  e.  ZZ  E. w  e.  W  ( P  .x.  C )  =  ( w (
-g `  G )
( k  .x.  A
) ) )
5351, 52sylib 208 . . 3  |-  ( ph  ->  E. k  e.  ZZ  E. w  e.  W  ( P  .x.  C )  =  ( w (
-g `  G )
( k  .x.  A
) ) )
5422ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  w  e.  W )  ->  G  e.  Grp )
553subgss 17595 . . . . . . . . . . 11  |-  ( W  e.  (SubGrp `  G
)  ->  W  C_  B
)
5614, 55syl 17 . . . . . . . . . 10  |-  ( ph  ->  W  C_  B )
5756adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ZZ )  ->  W  C_  B )
5857sselda 3603 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  w  e.  W )  ->  w  e.  B )
59 simplr 792 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  w  e.  W )  ->  k  e.  ZZ )
6028ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  w  e.  W )  ->  A  e.  B )
613, 19mulgcl 17559 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  k  e.  ZZ  /\  A  e.  B )  ->  (
k  .x.  A )  e.  B )
6254, 59, 60, 61syl3anc 1326 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  w  e.  W )  ->  (
k  .x.  A )  e.  B )
63 pgpprm 18008 . . . . . . . . . . 11  |-  ( P pGrp 
G  ->  P  e.  Prime )
64 prmz 15389 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ZZ )
658, 63, 643syl 18 . . . . . . . . . 10  |-  ( ph  ->  P  e.  ZZ )
6618eldifad 3586 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  U )
6727, 66sseldd 3604 . . . . . . . . . 10  |-  ( ph  ->  C  e.  B )
683, 19mulgcl 17559 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  P  e.  ZZ  /\  C  e.  B )  ->  ( P  .x.  C )  e.  B )
6922, 65, 67, 68syl3anc 1326 . . . . . . . . 9  |-  ( ph  ->  ( P  .x.  C
)  e.  B )
7069ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  w  e.  W )  ->  ( P  .x.  C )  e.  B )
71 eqid 2622 . . . . . . . . 9  |-  ( +g  `  G )  =  ( +g  `  G )
723, 71, 35grpsubadd 17503 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( w  e.  B  /\  ( k  .x.  A
)  e.  B  /\  ( P  .x.  C )  e.  B ) )  ->  ( ( w ( -g `  G
) ( k  .x.  A ) )  =  ( P  .x.  C
)  <->  ( ( P 
.x.  C ) ( +g  `  G ) ( k  .x.  A
) )  =  w ) )
7354, 58, 62, 70, 72syl13anc 1328 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  w  e.  W )  ->  (
( w ( -g `  G ) ( k 
.x.  A ) )  =  ( P  .x.  C )  <->  ( ( P  .x.  C ) ( +g  `  G ) ( k  .x.  A
) )  =  w ) )
74 eqcom 2629 . . . . . . 7  |-  ( ( P  .x.  C )  =  ( w (
-g `  G )
( k  .x.  A
) )  <->  ( w
( -g `  G ) ( k  .x.  A
) )  =  ( P  .x.  C ) )
75 eqcom 2629 . . . . . . 7  |-  ( w  =  ( ( P 
.x.  C ) ( +g  `  G ) ( k  .x.  A
) )  <->  ( ( P  .x.  C ) ( +g  `  G ) ( k  .x.  A
) )  =  w )
7673, 74, 753bitr4g 303 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  w  e.  W )  ->  (
( P  .x.  C
)  =  ( w ( -g `  G
) ( k  .x.  A ) )  <->  w  =  ( ( P  .x.  C ) ( +g  `  G ) ( k 
.x.  A ) ) ) )
7776rexbidva 3049 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( E. w  e.  W  ( P  .x.  C )  =  ( w (
-g `  G )
( k  .x.  A
) )  <->  E. w  e.  W  w  =  ( ( P  .x.  C ) ( +g  `  G ) ( k 
.x.  A ) ) ) )
78 risset 3062 . . . . 5  |-  ( ( ( P  .x.  C
) ( +g  `  G
) ( k  .x.  A ) )  e.  W  <->  E. w  e.  W  w  =  ( ( P  .x.  C ) ( +g  `  G ) ( k  .x.  A
) ) )
7977, 78syl6bbr 278 . . . 4  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( E. w  e.  W  ( P  .x.  C )  =  ( w (
-g `  G )
( k  .x.  A
) )  <->  ( ( P  .x.  C ) ( +g  `  G ) ( k  .x.  A
) )  e.  W
) )
8079rexbidva 3049 . . 3  |-  ( ph  ->  ( E. k  e.  ZZ  E. w  e.  W  ( P  .x.  C )  =  ( w ( -g `  G
) ( k  .x.  A ) )  <->  E. k  e.  ZZ  ( ( P 
.x.  C ) ( +g  `  G ) ( k  .x.  A
) )  e.  W
) )
8153, 80mpbid 222 . 2  |-  ( ph  ->  E. k  e.  ZZ  ( ( P  .x.  C ) ( +g  `  G ) ( k 
.x.  A ) )  e.  W )
828adantr 481 . . 3  |-  ( (
ph  /\  ( k  e.  ZZ  /\  ( ( P  .x.  C ) ( +g  `  G
) ( k  .x.  A ) )  e.  W ) )  ->  P pGrp  G )
839adantr 481 . . 3  |-  ( (
ph  /\  ( k  e.  ZZ  /\  ( ( P  .x.  C ) ( +g  `  G
) ( k  .x.  A ) )  e.  W ) )  ->  G  e.  Abel )
8410adantr 481 . . 3  |-  ( (
ph  /\  ( k  e.  ZZ  /\  ( ( P  .x.  C ) ( +g  `  G
) ( k  .x.  A ) )  e.  W ) )  ->  B  e.  Fin )
8511adantr 481 . . 3  |-  ( (
ph  /\  ( k  e.  ZZ  /\  ( ( P  .x.  C ) ( +g  `  G
) ( k  .x.  A ) )  e.  W ) )  -> 
( O `  A
)  =  E )
8612adantr 481 . . 3  |-  ( (
ph  /\  ( k  e.  ZZ  /\  ( ( P  .x.  C ) ( +g  `  G
) ( k  .x.  A ) )  e.  W ) )  ->  U  e.  (SubGrp `  G
) )
8713adantr 481 . . 3  |-  ( (
ph  /\  ( k  e.  ZZ  /\  ( ( P  .x.  C ) ( +g  `  G
) ( k  .x.  A ) )  e.  W ) )  ->  A  e.  U )
8814adantr 481 . . 3  |-  ( (
ph  /\  ( k  e.  ZZ  /\  ( ( P  .x.  C ) ( +g  `  G
) ( k  .x.  A ) )  e.  W ) )  ->  W  e.  (SubGrp `  G
) )
8915adantr 481 . . 3  |-  ( (
ph  /\  ( k  e.  ZZ  /\  ( ( P  .x.  C ) ( +g  `  G
) ( k  .x.  A ) )  e.  W ) )  -> 
( S  i^i  W
)  =  {  .0.  } )
9016adantr 481 . . 3  |-  ( (
ph  /\  ( k  e.  ZZ  /\  ( ( P  .x.  C ) ( +g  `  G
) ( k  .x.  A ) )  e.  W ) )  -> 
( S  .(+)  W ) 
C_  U )
9117adantr 481 . . 3  |-  ( (
ph  /\  ( k  e.  ZZ  /\  ( ( P  .x.  C ) ( +g  `  G
) ( k  .x.  A ) )  e.  W ) )  ->  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  ( S  .(+)  W )  C.  w )
)
9218adantr 481 . . 3  |-  ( (
ph  /\  ( k  e.  ZZ  /\  ( ( P  .x.  C ) ( +g  `  G
) ( k  .x.  A ) )  e.  W ) )  ->  C  e.  ( U  \  ( S  .(+)  W ) ) )
93 simprl 794 . . 3  |-  ( (
ph  /\  ( k  e.  ZZ  /\  ( ( P  .x.  C ) ( +g  `  G
) ( k  .x.  A ) )  e.  W ) )  -> 
k  e.  ZZ )
94 simprr 796 . . 3  |-  ( (
ph  /\  ( k  e.  ZZ  /\  ( ( P  .x.  C ) ( +g  `  G
) ( k  .x.  A ) )  e.  W ) )  -> 
( ( P  .x.  C ) ( +g  `  G ) ( k 
.x.  A ) )  e.  W )
95 eqid 2622 . . 3  |-  ( C ( +g  `  G
) ( ( k  /  P )  .x.  A ) )  =  ( C ( +g  `  G ) ( ( k  /  P ) 
.x.  A ) )
961, 2, 3, 4, 5, 6, 7, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 19, 93, 94, 95pgpfac1lem3 18476 . 2  |-  ( (
ph  /\  ( k  e.  ZZ  /\  ( ( P  .x.  C ) ( +g  `  G
) ( k  .x.  A ) )  e.  W ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) )
9781, 96rexlimddv 3035 1  |-  ( ph  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574    C. wpss 3575   {csn 4177   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   Fincfn 7955    / cdiv 10684   ZZcz 11377   Primecprime 15385   Basecbs 15857   +g cplusg 15941   0gc0g 16100  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245   Grpcgrp 17422   -gcsg 17424  .gcmg 17540  SubGrpcsubg 17588   odcod 17944  gExcgex 17945   pGrp cpgp 17946   LSSumclsm 18049   Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-eqg 17593  df-ga 17723  df-cntz 17750  df-od 17948  df-gex 17949  df-pgp 17950  df-lsm 18051  df-cmn 18195  df-abl 18196
This theorem is referenced by:  pgpfac1lem5  18478
  Copyright terms: Public domain W3C validator