MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxdstprj1 Structured version   Visualization version   GIF version

Theorem rrxdstprj1 23192
Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) (Revised by Thierry Arnoux, 7-Jul-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
rrxdstprj1.1 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
rrxdstprj1 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
Distinct variable groups:   ,𝐹   ,𝐺   ,𝐼   ,𝑉
Allowed substitution hints:   𝐴()   𝐷()   𝑀()   𝑋()

Proof of Theorem rrxdstprj1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simplll 798 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝐼𝑉)
2 simpr 477 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
3 simplr 792 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐹𝑋𝐺𝑋))
4 rrxmval.1 . . . . . . . . 9 𝑋 = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0}
5 simprl 794 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹𝑋)
64, 5rrxfsupp 23185 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ∈ Fin)
7 simprr 796 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺𝑋)
84, 7rrxfsupp 23185 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ∈ Fin)
9 unfi 8227 . . . . . . . 8 (((𝐹 supp 0) ∈ Fin ∧ (𝐺 supp 0) ∈ Fin) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
106, 8, 9syl2anc 693 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
114, 5rrxsuppss 23186 . . . . . . . . . 10 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ⊆ 𝐼)
124, 7rrxsuppss 23186 . . . . . . . . . 10 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ⊆ 𝐼)
1311, 12unssd 3789 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
1413sselda 3603 . . . . . . . 8 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝑘𝐼)
154, 5rrxf 23184 . . . . . . . . . . 11 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹:𝐼⟶ℝ)
1615ffvelrnda 6359 . . . . . . . . . 10 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
174, 7rrxf 23184 . . . . . . . . . . 11 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺:𝐼⟶ℝ)
1817ffvelrnda 6359 . . . . . . . . . 10 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
1916, 18resubcld 10458 . . . . . . . . 9 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
2019resqcld 13035 . . . . . . . 8 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
2114, 20syldan 487 . . . . . . 7 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
2219sqge0d 13036 . . . . . . . 8 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → 0 ≤ (((𝐹𝑘) − (𝐺𝑘))↑2))
2314, 22syldan 487 . . . . . . 7 ((((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 0 ≤ (((𝐹𝑘) − (𝐺𝑘))↑2))
24 fveq2 6191 . . . . . . . . 9 (𝑘 = 𝐴 → (𝐹𝑘) = (𝐹𝐴))
25 fveq2 6191 . . . . . . . . 9 (𝑘 = 𝐴 → (𝐺𝑘) = (𝐺𝐴))
2624, 25oveq12d 6668 . . . . . . . 8 (𝑘 = 𝐴 → ((𝐹𝑘) − (𝐺𝑘)) = ((𝐹𝐴) − (𝐺𝐴)))
2726oveq1d 6665 . . . . . . 7 (𝑘 = 𝐴 → (((𝐹𝑘) − (𝐺𝑘))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
28 simplr 792 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
2910, 21, 23, 27, 28fsumge1 14529 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (((𝐹𝐴) − (𝐺𝐴))↑2) ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
3013, 28sseldd 3604 . . . . . . . . 9 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴𝐼)
3115, 30ffvelrnd 6360 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐴) ∈ ℝ)
3217, 30ffvelrnd 6360 . . . . . . . 8 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺𝐴) ∈ ℝ)
3331, 32resubcld 10458 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴) − (𝐺𝐴)) ∈ ℝ)
34 absresq 14042 . . . . . . 7 (((𝐹𝐴) − (𝐺𝐴)) ∈ ℝ → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
3533, 34syl 17 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
3610, 21fsumrecl 14465 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
3710, 21, 23fsumge0 14527 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
38 resqrtth 13996 . . . . . . 7 ((Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) → ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
3936, 37, 38syl2anc 693 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
4029, 35, 393brtr4d 4685 . . . . 5 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) ≤ ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2))
4133recnd 10068 . . . . . . 7 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴) − (𝐺𝐴)) ∈ ℂ)
4241abscld 14175 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (abs‘((𝐹𝐴) − (𝐺𝐴))) ∈ ℝ)
4336, 37resqrtcld 14156 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ ℝ)
4441absge0d 14183 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (abs‘((𝐹𝐴) − (𝐺𝐴))))
4536, 37sqrtge0d 14159 . . . . . 6 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
4642, 43, 44, 45le2sqd 13044 . . . . 5 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴))) ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) ↔ ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) ≤ ((√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))↑2)))
4740, 46mpbird 247 . . . 4 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (abs‘((𝐹𝐴) − (𝐺𝐴))) ≤ (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
48 rrxdstprj1.1 . . . . . 6 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
4948remetdval 22592 . . . . 5 (((𝐹𝐴) ∈ ℝ ∧ (𝐺𝐴) ∈ ℝ) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
5031, 32, 49syl2anc 693 . . . 4 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
51 rrxmval.d . . . . . . 7 𝐷 = (dist‘(ℝ^‘𝐼))
524, 51rrxmval 23188 . . . . . 6 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
53523expb 1266 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
5453adantlr 751 . . . 4 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
5547, 50, 543brtr4d 4685 . . 3 (((𝐼𝑉𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
561, 2, 3, 55syl21anc 1325 . 2 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
57 simplll 798 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐼𝑉)
58 simplrl 800 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐹𝑋)
59 ssun1 3776 . . . . . . . . . 10 (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
6059a1i 11 . . . . . . . . 9 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
6160sscond 3747 . . . . . . . 8 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ (𝐹 supp 0)))
6261sselda 3603 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐴 ∈ (𝐼 ∖ (𝐹 supp 0)))
63 simpr 477 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋) → 𝐹𝑋)
644, 63rrxf 23184 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → 𝐹:𝐼⟶ℝ)
65 ssid 3624 . . . . . . . . 9 (𝐹 supp 0) ⊆ (𝐹 supp 0)
6665a1i 11 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → (𝐹 supp 0) ⊆ (𝐹 supp 0))
67 simpl 473 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → 𝐼𝑉)
68 0red 10041 . . . . . . . 8 ((𝐼𝑉𝐹𝑋) → 0 ∈ ℝ)
6964, 66, 67, 68suppssr 7326 . . . . . . 7 (((𝐼𝑉𝐹𝑋) ∧ 𝐴 ∈ (𝐼 ∖ (𝐹 supp 0))) → (𝐹𝐴) = 0)
7057, 58, 62, 69syl21anc 1325 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝐴) = 0)
71 0red 10041 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 0 ∈ ℝ)
7270, 71eqeltrd 2701 . . . . 5 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝐴) ∈ ℝ)
73 simplrr 801 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐺𝑋)
74 ssun2 3777 . . . . . . . . . 10 (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
7574a1i 11 . . . . . . . . 9 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
7675sscond 3747 . . . . . . . 8 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ (𝐺 supp 0)))
7776sselda 3603 . . . . . . 7 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐴 ∈ (𝐼 ∖ (𝐺 supp 0)))
78 simpr 477 . . . . . . . . 9 ((𝐼𝑉𝐺𝑋) → 𝐺𝑋)
794, 78rrxf 23184 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → 𝐺:𝐼⟶ℝ)
80 ssid 3624 . . . . . . . . 9 (𝐺 supp 0) ⊆ (𝐺 supp 0)
8180a1i 11 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → (𝐺 supp 0) ⊆ (𝐺 supp 0))
82 simpl 473 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → 𝐼𝑉)
83 0red 10041 . . . . . . . 8 ((𝐼𝑉𝐺𝑋) → 0 ∈ ℝ)
8479, 81, 82, 83suppssr 7326 . . . . . . 7 (((𝐼𝑉𝐺𝑋) ∧ 𝐴 ∈ (𝐼 ∖ (𝐺 supp 0))) → (𝐺𝐴) = 0)
8557, 73, 77, 84syl21anc 1325 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺𝐴) = 0)
8685, 71eqeltrd 2701 . . . . 5 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺𝐴) ∈ ℝ)
8772, 86, 49syl2anc 693 . . . 4 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
8870, 85oveq12d 6668 . . . . . 6 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴) − (𝐺𝐴)) = (0 − 0))
89 0m0e0 11130 . . . . . 6 (0 − 0) = 0
9088, 89syl6eq 2672 . . . . 5 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴) − (𝐺𝐴)) = 0)
9190abs00bd 14031 . . . 4 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (abs‘((𝐹𝐴) − (𝐺𝐴))) = 0)
9287, 91eqtrd 2656 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴)𝑀(𝐺𝐴)) = 0)
934, 51rrxmet 23191 . . . . 5 (𝐼𝑉𝐷 ∈ (Met‘𝑋))
9493ad3antrrr 766 . . . 4 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝐷 ∈ (Met‘𝑋))
95 metge0 22150 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐹𝑋𝐺𝑋) → 0 ≤ (𝐹𝐷𝐺))
9694, 58, 73, 95syl3anc 1326 . . 3 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 0 ≤ (𝐹𝐷𝐺))
9792, 96eqbrtrd 4675 . 2 ((((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
98 simplr 792 . . . 4 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴𝐼)
99 simprl 794 . . . . . . 7 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹𝑋)
1004, 99rrxsuppss 23186 . . . . . 6 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹 supp 0) ⊆ 𝐼)
101 simprr 796 . . . . . . 7 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺𝑋)
1024, 101rrxsuppss 23186 . . . . . 6 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺 supp 0) ⊆ 𝐼)
103100, 102unssd 3789 . . . . 5 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
104 undif 4049 . . . . 5 (((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼 ↔ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) = 𝐼)
105103, 104sylib 208 . . . 4 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) = 𝐼)
10698, 105eleqtrrd 2704 . . 3 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))))
107 elun 3753 . . 3 (𝐴 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∪ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) ↔ (𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∨ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))))
108106, 107sylib 208 . 2 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐴 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∨ 𝐴 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))))
10956, 97, 108mpjaodan 827 1 (((𝐼𝑉𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  {crab 2916  cdif 3571  cun 3572  wss 3574   class class class wbr 4653   × cxp 5112  cres 5116  ccom 5118  cfv 5888  (class class class)co 6650   supp csupp 7295  𝑚 cmap 7857  Fincfn 7955   finSupp cfsupp 8275  cr 9935  0cc0 9936  cle 10075  cmin 10266  2c2 11070  cexp 12860  csqrt 13973  abscabs 13974  Σcsu 14416  distcds 15950  Metcme 19732  ℝ^crrx 23171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-staf 18845  df-srng 18846  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-xmet 19739  df-met 19740  df-cnfld 19747  df-refld 19951  df-dsmm 20076  df-frlm 20091  df-nm 22387  df-tng 22389  df-tch 22969  df-rrx 23173
This theorem is referenced by:  rrnprjdstle  40521
  Copyright terms: Public domain W3C validator