Proof of Theorem scvxcvx
| Step | Hyp | Ref
| Expression |
| 1 | | scvxcvx.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
| 2 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝐷 ⊆ ℝ) |
| 3 | | simpr1 1067 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑋 ∈ 𝐷) |
| 4 | 2, 3 | sseldd 3604 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑋 ∈ ℝ) |
| 5 | 4 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → 𝑋 ∈ ℝ) |
| 6 | | simpr2 1068 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑌 ∈ 𝐷) |
| 7 | 2, 6 | sseldd 3604 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑌 ∈ ℝ) |
| 8 | 7 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → 𝑌 ∈ ℝ) |
| 9 | 5, 8 | lttri4d 10178 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ∨ 𝑌 < 𝑋)) |
| 10 | | simprl 794 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → 𝑇 ∈ (0(,)1)) |
| 11 | 3 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → 𝑋 ∈ 𝐷) |
| 12 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → 𝑌 ∈ 𝐷) |
| 13 | 11, 12 | jca 554 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷)) |
| 14 | | simprr 796 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → 𝑋 < 𝑌) |
| 15 | | simpll 790 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → 𝜑) |
| 16 | | breq1 4656 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (𝑥 < 𝑦 ↔ 𝑋 < 𝑦)) |
| 17 | | oveq2 6658 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑋 → (𝑡 · 𝑥) = (𝑡 · 𝑋)) |
| 18 | 17 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑋 → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) |
| 19 | 18 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑋 → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = (𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦)))) |
| 20 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 21 | 20 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑋 → (𝑡 · (𝐹‘𝑥)) = (𝑡 · (𝐹‘𝑋))) |
| 22 | 21 | oveq1d 6665 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑋 → ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦))) = ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑦)))) |
| 23 | 19, 22 | breq12d 4666 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑋 → ((𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦))) ↔ (𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑦))))) |
| 24 | 23 | ralbidv 2986 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → (∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦))) ↔ ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑦))))) |
| 25 | 24 | imbi2d 330 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → ((𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) ↔ (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑦)))))) |
| 26 | 16, 25 | imbi12d 334 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → ((𝑥 < 𝑦 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦))))) ↔ (𝑋 < 𝑦 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑦))))))) |
| 27 | | breq2 4657 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑌 → (𝑋 < 𝑦 ↔ 𝑋 < 𝑌)) |
| 28 | | oveq2 6658 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑌 → ((1 − 𝑡) · 𝑦) = ((1 − 𝑡) · 𝑌)) |
| 29 | 28 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑌 → ((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) |
| 30 | 29 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑌 → (𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) = (𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌)))) |
| 31 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) |
| 32 | 31 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑌 → ((1 − 𝑡) · (𝐹‘𝑦)) = ((1 − 𝑡) · (𝐹‘𝑌))) |
| 33 | 32 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑌 → ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑦))) = ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑌)))) |
| 34 | 30, 33 | breq12d 4666 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑌 → ((𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑦))) ↔ (𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) < ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑌))))) |
| 35 | 34 | ralbidv 2986 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑌 → (∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑦))) ↔ ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) < ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑌))))) |
| 36 | 35 | imbi2d 330 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑌 → ((𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑦)))) ↔ (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) < ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑌)))))) |
| 37 | 27, 36 | imbi12d 334 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑌 → ((𝑋 < 𝑦 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑦))))) ↔ (𝑋 < 𝑌 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) < ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑌))))))) |
| 38 | | scvxcvx.4 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑥 < 𝑦) ∧ 𝑡 ∈ (0(,)1)) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) |
| 39 | 38 | 3expia 1267 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑥 < 𝑦)) → (𝑡 ∈ (0(,)1) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦))))) |
| 40 | 39 | ralrimiv 2965 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑥 < 𝑦)) → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) |
| 41 | 40 | expcom 451 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑥 < 𝑦) → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦))))) |
| 42 | 41 | 3expia 1267 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 < 𝑦 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))))) |
| 43 | 26, 37, 42 | vtocl2ga 3274 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷) → (𝑋 < 𝑌 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) < ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑌)))))) |
| 44 | 13, 14, 15, 43 | syl3c 66 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) < ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑌)))) |
| 45 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑇 → (𝑡 · 𝑋) = (𝑇 · 𝑋)) |
| 46 | | oveq2 6658 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑇 → (1 − 𝑡) = (1 − 𝑇)) |
| 47 | 46 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑇 → ((1 − 𝑡) · 𝑌) = ((1 − 𝑇) · 𝑌)) |
| 48 | 45, 47 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → ((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) |
| 49 | 48 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → (𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) = (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)))) |
| 50 | | oveq1 6657 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → (𝑡 · (𝐹‘𝑋)) = (𝑇 · (𝐹‘𝑋))) |
| 51 | 46 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → ((1 − 𝑡) · (𝐹‘𝑌)) = ((1 − 𝑇) · (𝐹‘𝑌))) |
| 52 | 50, 51 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))) |
| 53 | 49, 52 | breq12d 4666 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → ((𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) < ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑌))) ↔ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))))) |
| 54 | 53 | rspcv 3305 |
. . . . . . . . 9
⊢ (𝑇 ∈ (0(,)1) →
(∀𝑡 ∈
(0(,)1)(𝐹‘((𝑡 · 𝑋) + ((1 − 𝑡) · 𝑌))) < ((𝑡 · (𝐹‘𝑋)) + ((1 − 𝑡) · (𝐹‘𝑌))) → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))))) |
| 55 | 10, 44, 54 | sylc 65 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))) |
| 56 | 55 | orcd 407 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑋 < 𝑌)) → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))))) |
| 57 | 56 | expr 643 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → (𝑋 < 𝑌 → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))))) |
| 58 | | unitssre 12319 |
. . . . . . . . . . . . . . . 16
⊢ (0[,]1)
⊆ ℝ |
| 59 | | simpr3 1069 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ (0[,]1)) |
| 60 | 58, 59 | sseldi 3601 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℝ) |
| 61 | 60 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℂ) |
| 62 | | ax-1cn 9994 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
| 63 | | pncan3 10289 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑇 + (1
− 𝑇)) =
1) |
| 64 | 61, 62, 63 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝑇 + (1 − 𝑇)) = 1) |
| 65 | 64 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑌) = (1 · 𝑌)) |
| 66 | | subcl 10280 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℂ ∧ 𝑇
∈ ℂ) → (1 − 𝑇) ∈ ℂ) |
| 67 | 62, 61, 66 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈
ℂ) |
| 68 | 7 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑌 ∈ ℂ) |
| 69 | 61, 67, 68 | adddird 10065 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑌) = ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌))) |
| 70 | 68 | mulid2d 10058 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (1 · 𝑌) = 𝑌) |
| 71 | 65, 69, 70 | 3eqtr3d 2664 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌)) = 𝑌) |
| 72 | 71 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝐹‘((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌))) = (𝐹‘𝑌)) |
| 73 | 64 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · (𝐹‘𝑌)) = (1 · (𝐹‘𝑌))) |
| 74 | | scvxcvx.2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| 75 | 74 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝐹:𝐷⟶ℝ) |
| 76 | 75, 6 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝐹‘𝑌) ∈ ℝ) |
| 77 | 76 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝐹‘𝑌) ∈ ℂ) |
| 78 | 61, 67, 77 | adddird 10065 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · (𝐹‘𝑌)) = ((𝑇 · (𝐹‘𝑌)) + ((1 − 𝑇) · (𝐹‘𝑌)))) |
| 79 | 77 | mulid2d 10058 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (1 · (𝐹‘𝑌)) = (𝐹‘𝑌)) |
| 80 | 73, 78, 79 | 3eqtr3d 2664 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · (𝐹‘𝑌)) + ((1 − 𝑇) · (𝐹‘𝑌))) = (𝐹‘𝑌)) |
| 81 | 72, 80 | eqtr4d 2659 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝐹‘((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑌)) + ((1 − 𝑇) · (𝐹‘𝑌)))) |
| 82 | 81 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → (𝐹‘((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑌)) + ((1 − 𝑇) · (𝐹‘𝑌)))) |
| 83 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑋 = 𝑌 → (𝑇 · 𝑋) = (𝑇 · 𝑌)) |
| 84 | 83 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (𝑋 = 𝑌 → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌))) |
| 85 | 84 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑋 = 𝑌 → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = (𝐹‘((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌)))) |
| 86 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑋 = 𝑌 → (𝐹‘𝑋) = (𝐹‘𝑌)) |
| 87 | 86 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑋 = 𝑌 → (𝑇 · (𝐹‘𝑋)) = (𝑇 · (𝐹‘𝑌))) |
| 88 | 87 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑋 = 𝑌 → ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) = ((𝑇 · (𝐹‘𝑌)) + ((1 − 𝑇) · (𝐹‘𝑌)))) |
| 89 | 85, 88 | eqeq12d 2637 |
. . . . . . . 8
⊢ (𝑋 = 𝑌 → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) ↔ (𝐹‘((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑌)) + ((1 − 𝑇) · (𝐹‘𝑌))))) |
| 90 | 82, 89 | syl5ibrcom 237 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → (𝑋 = 𝑌 → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))))) |
| 91 | | olc 399 |
. . . . . . 7
⊢ ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))))) |
| 92 | 90, 91 | syl6 35 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → (𝑋 = 𝑌 → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))))) |
| 93 | | 1re 10039 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ |
| 94 | | elioore 12205 |
. . . . . . . . . . . . 13
⊢ (𝑇 ∈ (0(,)1) → 𝑇 ∈
ℝ) |
| 95 | | resubcl 10345 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℝ ∧ 𝑇
∈ ℝ) → (1 − 𝑇) ∈ ℝ) |
| 96 | 93, 94, 95 | sylancr 695 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ (0(,)1) → (1
− 𝑇) ∈
ℝ) |
| 97 | | eliooord 12233 |
. . . . . . . . . . . . . 14
⊢ (𝑇 ∈ (0(,)1) → (0 <
𝑇 ∧ 𝑇 < 1)) |
| 98 | 97 | simprd 479 |
. . . . . . . . . . . . 13
⊢ (𝑇 ∈ (0(,)1) → 𝑇 < 1) |
| 99 | | posdif 10521 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ∈ ℝ ∧ 1 ∈
ℝ) → (𝑇 < 1
↔ 0 < (1 − 𝑇))) |
| 100 | 94, 93, 99 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ (𝑇 ∈ (0(,)1) → (𝑇 < 1 ↔ 0 < (1 −
𝑇))) |
| 101 | 98, 100 | mpbid 222 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ (0(,)1) → 0 < (1
− 𝑇)) |
| 102 | 97 | simpld 475 |
. . . . . . . . . . . . 13
⊢ (𝑇 ∈ (0(,)1) → 0 <
𝑇) |
| 103 | | ltsubpos 10520 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ∈ ℝ ∧ 1 ∈
ℝ) → (0 < 𝑇
↔ (1 − 𝑇) <
1)) |
| 104 | 94, 93, 103 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ (𝑇 ∈ (0(,)1) → (0 <
𝑇 ↔ (1 − 𝑇) < 1)) |
| 105 | 102, 104 | mpbid 222 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ (0(,)1) → (1
− 𝑇) <
1) |
| 106 | | 0xr 10086 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ* |
| 107 | 93 | rexri 10097 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ* |
| 108 | | elioo2 12216 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ*) → ((1
− 𝑇) ∈ (0(,)1)
↔ ((1 − 𝑇)
∈ ℝ ∧ 0 < (1 − 𝑇) ∧ (1 − 𝑇) < 1))) |
| 109 | 106, 107,
108 | mp2an 708 |
. . . . . . . . . . . 12
⊢ ((1
− 𝑇) ∈ (0(,)1)
↔ ((1 − 𝑇)
∈ ℝ ∧ 0 < (1 − 𝑇) ∧ (1 − 𝑇) < 1)) |
| 110 | 96, 101, 105, 109 | syl3anbrc 1246 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ (0(,)1) → (1
− 𝑇) ∈
(0(,)1)) |
| 111 | 110 | ad2antrl 764 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → (1 − 𝑇) ∈ (0(,)1)) |
| 112 | 6 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → 𝑌 ∈ 𝐷) |
| 113 | 3 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → 𝑋 ∈ 𝐷) |
| 114 | 112, 113 | jca 554 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → (𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷)) |
| 115 | | simprr 796 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → 𝑌 < 𝑋) |
| 116 | | simpll 790 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → 𝜑) |
| 117 | | breq1 4656 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑌 → (𝑥 < 𝑦 ↔ 𝑌 < 𝑦)) |
| 118 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑌 → (𝑡 · 𝑥) = (𝑡 · 𝑌)) |
| 119 | 118 | oveq1d 6665 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑌 → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) |
| 120 | 119 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑌 → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) = (𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦)))) |
| 121 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑌 → (𝐹‘𝑥) = (𝐹‘𝑌)) |
| 122 | 121 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑌 → (𝑡 · (𝐹‘𝑥)) = (𝑡 · (𝐹‘𝑌))) |
| 123 | 122 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑌 → ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦))) = ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑦)))) |
| 124 | 120, 123 | breq12d 4666 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑌 → ((𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦))) ↔ (𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑦))))) |
| 125 | 124 | ralbidv 2986 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑌 → (∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦))) ↔ ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑦))))) |
| 126 | 125 | imbi2d 330 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑌 → ((𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) ↔ (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑦)))))) |
| 127 | 117, 126 | imbi12d 334 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑌 → ((𝑥 < 𝑦 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦))))) ↔ (𝑌 < 𝑦 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑦))))))) |
| 128 | | breq2 4657 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑋 → (𝑌 < 𝑦 ↔ 𝑌 < 𝑋)) |
| 129 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑋 → ((1 − 𝑡) · 𝑦) = ((1 − 𝑡) · 𝑋)) |
| 130 | 129 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑋 → ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦)) = ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) |
| 131 | 130 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑋 → (𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) = (𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋)))) |
| 132 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) |
| 133 | 132 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑋 → ((1 − 𝑡) · (𝐹‘𝑦)) = ((1 − 𝑡) · (𝐹‘𝑋))) |
| 134 | 133 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑋 → ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑦))) = ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑋)))) |
| 135 | 131, 134 | breq12d 4666 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑋 → ((𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑦))) ↔ (𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) < ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑋))))) |
| 136 | 135 | ralbidv 2986 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑋 → (∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑦))) ↔ ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) < ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑋))))) |
| 137 | 136 | imbi2d 330 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑋 → ((𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑦)))) ↔ (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) < ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑋)))))) |
| 138 | 128, 137 | imbi12d 334 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑋 → ((𝑌 < 𝑦 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑦))) < ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑦))))) ↔ (𝑌 < 𝑋 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) < ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑋))))))) |
| 139 | 127, 138,
42 | vtocl2ga 3274 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷) → (𝑌 < 𝑋 → (𝜑 → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) < ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑋)))))) |
| 140 | 114, 115,
116, 139 | syl3c 66 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → ∀𝑡 ∈ (0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) < ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑋)))) |
| 141 | | oveq1 6657 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = (1 − 𝑇) → (𝑡 · 𝑌) = ((1 − 𝑇) · 𝑌)) |
| 142 | | oveq2 6658 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = (1 − 𝑇) → (1 − 𝑡) = (1 − (1 − 𝑇))) |
| 143 | 142 | oveq1d 6665 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = (1 − 𝑇) → ((1 − 𝑡) · 𝑋) = ((1 − (1 − 𝑇)) · 𝑋)) |
| 144 | 141, 143 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (𝑡 = (1 − 𝑇) → ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋)) = (((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋))) |
| 145 | 144 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑡 = (1 − 𝑇) → (𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) = (𝐹‘(((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋)))) |
| 146 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑡 = (1 − 𝑇) → (𝑡 · (𝐹‘𝑌)) = ((1 − 𝑇) · (𝐹‘𝑌))) |
| 147 | 142 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (𝑡 = (1 − 𝑇) → ((1 − 𝑡) · (𝐹‘𝑋)) = ((1 − (1 − 𝑇)) · (𝐹‘𝑋))) |
| 148 | 146, 147 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (𝑡 = (1 − 𝑇) → ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑋))) = (((1 − 𝑇) · (𝐹‘𝑌)) + ((1 − (1 − 𝑇)) · (𝐹‘𝑋)))) |
| 149 | 145, 148 | breq12d 4666 |
. . . . . . . . . . 11
⊢ (𝑡 = (1 − 𝑇) → ((𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) < ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑋))) ↔ (𝐹‘(((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋))) < (((1 − 𝑇) · (𝐹‘𝑌)) + ((1 − (1 − 𝑇)) · (𝐹‘𝑋))))) |
| 150 | 149 | rspcv 3305 |
. . . . . . . . . 10
⊢ ((1
− 𝑇) ∈ (0(,)1)
→ (∀𝑡 ∈
(0(,)1)(𝐹‘((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑋))) < ((𝑡 · (𝐹‘𝑌)) + ((1 − 𝑡) · (𝐹‘𝑋))) → (𝐹‘(((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋))) < (((1 − 𝑇) · (𝐹‘𝑌)) + ((1 − (1 − 𝑇)) · (𝐹‘𝑋))))) |
| 151 | 111, 140,
150 | sylc 65 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → (𝐹‘(((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋))) < (((1 − 𝑇) · (𝐹‘𝑌)) + ((1 − (1 − 𝑇)) · (𝐹‘𝑋)))) |
| 152 | | nncan 10310 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℂ ∧ 𝑇
∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇) |
| 153 | 62, 61, 152 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (1 − (1
− 𝑇)) = 𝑇) |
| 154 | 153 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((1 − (1
− 𝑇)) · 𝑋) = (𝑇 · 𝑋)) |
| 155 | 154 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋)) = (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋))) |
| 156 | 93, 60, 95 | sylancr 695 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈
ℝ) |
| 157 | 156, 7 | remulcld 10070 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · 𝑌) ∈ ℝ) |
| 158 | 157 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · 𝑌) ∈ ℂ) |
| 159 | 60, 4 | remulcld 10070 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝑇 · 𝑋) ∈ ℝ) |
| 160 | 159 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝑇 · 𝑋) ∈ ℂ) |
| 161 | 158, 160 | addcomd 10238 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) |
| 162 | 155, 161 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) |
| 163 | 162 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → (((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) |
| 164 | 163 | fveq2d 6195 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → (𝐹‘(((1 − 𝑇) · 𝑌) + ((1 − (1 − 𝑇)) · 𝑋))) = (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)))) |
| 165 | 153 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((1 − (1
− 𝑇)) · (𝐹‘𝑋)) = (𝑇 · (𝐹‘𝑋))) |
| 166 | 165 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · (𝐹‘𝑌)) + ((1 − (1 − 𝑇)) · (𝐹‘𝑋))) = (((1 − 𝑇) · (𝐹‘𝑌)) + (𝑇 · (𝐹‘𝑋)))) |
| 167 | 156, 76 | remulcld 10070 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · (𝐹‘𝑌)) ∈ ℝ) |
| 168 | 167 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · (𝐹‘𝑌)) ∈ ℂ) |
| 169 | 75, 3 | ffvelrnd 6360 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝐹‘𝑋) ∈ ℝ) |
| 170 | 60, 169 | remulcld 10070 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝑇 · (𝐹‘𝑋)) ∈ ℝ) |
| 171 | 170 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝑇 · (𝐹‘𝑋)) ∈ ℂ) |
| 172 | 168, 171 | addcomd 10238 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · (𝐹‘𝑌)) + (𝑇 · (𝐹‘𝑋))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))) |
| 173 | 166, 172 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (((1 − 𝑇) · (𝐹‘𝑌)) + ((1 − (1 − 𝑇)) · (𝐹‘𝑋))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))) |
| 174 | 173 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → (((1 − 𝑇) · (𝐹‘𝑌)) + ((1 − (1 − 𝑇)) · (𝐹‘𝑋))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))) |
| 175 | 151, 164,
174 | 3brtr3d 4684 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))) |
| 176 | 175 | orcd 407 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ (𝑇 ∈ (0(,)1) ∧ 𝑌 < 𝑋)) → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))))) |
| 177 | 176 | expr 643 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → (𝑌 < 𝑋 → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))))) |
| 178 | 57, 92, 177 | 3jaod 1392 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → ((𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ∨ 𝑌 < 𝑋) → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))))) |
| 179 | 9, 178 | mpd 15 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) ∧ 𝑇 ∈ (0(,)1)) → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))))) |
| 180 | 179 | ex 450 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝑇 ∈ (0(,)1) → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))))) |
| 181 | | elpri 4197 |
. . . 4
⊢ (𝑇 ∈ {0, 1} → (𝑇 = 0 ∨ 𝑇 = 1)) |
| 182 | 77 | addid2d 10237 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (0 + (𝐹‘𝑌)) = (𝐹‘𝑌)) |
| 183 | 169 | recnd 10068 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝐹‘𝑋) ∈ ℂ) |
| 184 | 183 | mul02d 10234 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (0 · (𝐹‘𝑋)) = 0) |
| 185 | 184, 79 | oveq12d 6668 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((0 · (𝐹‘𝑋)) + (1 · (𝐹‘𝑌))) = (0 + (𝐹‘𝑌))) |
| 186 | 4 | recnd 10068 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑋 ∈ ℂ) |
| 187 | 186 | mul02d 10234 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (0 · 𝑋) = 0) |
| 188 | 187, 70 | oveq12d 6668 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((0 · 𝑋) + (1 · 𝑌)) = (0 + 𝑌)) |
| 189 | 68 | addid2d 10237 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (0 + 𝑌) = 𝑌) |
| 190 | 188, 189 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((0 · 𝑋) + (1 · 𝑌)) = 𝑌) |
| 191 | 190 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝐹‘((0 · 𝑋) + (1 · 𝑌))) = (𝐹‘𝑌)) |
| 192 | 182, 185,
191 | 3eqtr4rd 2667 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝐹‘((0 · 𝑋) + (1 · 𝑌))) = ((0 · (𝐹‘𝑋)) + (1 · (𝐹‘𝑌)))) |
| 193 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑇 = 0 → (𝑇 · 𝑋) = (0 · 𝑋)) |
| 194 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑇 = 0 → (1 − 𝑇) = (1 −
0)) |
| 195 | | 1m0e1 11131 |
. . . . . . . . . . 11
⊢ (1
− 0) = 1 |
| 196 | 194, 195 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (𝑇 = 0 → (1 − 𝑇) = 1) |
| 197 | 196 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑇 = 0 → ((1 − 𝑇) · 𝑌) = (1 · 𝑌)) |
| 198 | 193, 197 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑇 = 0 → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((0 · 𝑋) + (1 · 𝑌))) |
| 199 | 198 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑇 = 0 → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = (𝐹‘((0 · 𝑋) + (1 · 𝑌)))) |
| 200 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑇 = 0 → (𝑇 · (𝐹‘𝑋)) = (0 · (𝐹‘𝑋))) |
| 201 | 196 | oveq1d 6665 |
. . . . . . . 8
⊢ (𝑇 = 0 → ((1 − 𝑇) · (𝐹‘𝑌)) = (1 · (𝐹‘𝑌))) |
| 202 | 200, 201 | oveq12d 6668 |
. . . . . . 7
⊢ (𝑇 = 0 → ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) = ((0 · (𝐹‘𝑋)) + (1 · (𝐹‘𝑌)))) |
| 203 | 199, 202 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑇 = 0 → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) ↔ (𝐹‘((0 · 𝑋) + (1 · 𝑌))) = ((0 · (𝐹‘𝑋)) + (1 · (𝐹‘𝑌))))) |
| 204 | 192, 203 | syl5ibrcom 237 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝑇 = 0 → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))))) |
| 205 | 183 | addid1d 10236 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝐹‘𝑋) + 0) = (𝐹‘𝑋)) |
| 206 | 183 | mulid2d 10058 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (1 · (𝐹‘𝑋)) = (𝐹‘𝑋)) |
| 207 | 77 | mul02d 10234 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (0 · (𝐹‘𝑌)) = 0) |
| 208 | 206, 207 | oveq12d 6668 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((1 · (𝐹‘𝑋)) + (0 · (𝐹‘𝑌))) = ((𝐹‘𝑋) + 0)) |
| 209 | 186 | mulid2d 10058 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (1 · 𝑋) = 𝑋) |
| 210 | 68 | mul02d 10234 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (0 · 𝑌) = 0) |
| 211 | 209, 210 | oveq12d 6668 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((1 · 𝑋) + (0 · 𝑌)) = (𝑋 + 0)) |
| 212 | 186 | addid1d 10236 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝑋 + 0) = 𝑋) |
| 213 | 211, 212 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((1 · 𝑋) + (0 · 𝑌)) = 𝑋) |
| 214 | 213 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝐹‘((1 · 𝑋) + (0 · 𝑌))) = (𝐹‘𝑋)) |
| 215 | 205, 208,
214 | 3eqtr4rd 2667 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝐹‘((1 · 𝑋) + (0 · 𝑌))) = ((1 · (𝐹‘𝑋)) + (0 · (𝐹‘𝑌)))) |
| 216 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑇 = 1 → (𝑇 · 𝑋) = (1 · 𝑋)) |
| 217 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑇 = 1 → (1 − 𝑇) = (1 −
1)) |
| 218 | | 1m1e0 11089 |
. . . . . . . . . . 11
⊢ (1
− 1) = 0 |
| 219 | 217, 218 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (𝑇 = 1 → (1 − 𝑇) = 0) |
| 220 | 219 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑇 = 1 → ((1 − 𝑇) · 𝑌) = (0 · 𝑌)) |
| 221 | 216, 220 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑇 = 1 → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((1 · 𝑋) + (0 · 𝑌))) |
| 222 | 221 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑇 = 1 → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = (𝐹‘((1 · 𝑋) + (0 · 𝑌)))) |
| 223 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑇 = 1 → (𝑇 · (𝐹‘𝑋)) = (1 · (𝐹‘𝑋))) |
| 224 | 219 | oveq1d 6665 |
. . . . . . . 8
⊢ (𝑇 = 1 → ((1 − 𝑇) · (𝐹‘𝑌)) = (0 · (𝐹‘𝑌))) |
| 225 | 223, 224 | oveq12d 6668 |
. . . . . . 7
⊢ (𝑇 = 1 → ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) = ((1 · (𝐹‘𝑋)) + (0 · (𝐹‘𝑌)))) |
| 226 | 222, 225 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑇 = 1 → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) ↔ (𝐹‘((1 · 𝑋) + (0 · 𝑌))) = ((1 · (𝐹‘𝑋)) + (0 · (𝐹‘𝑌))))) |
| 227 | 215, 226 | syl5ibrcom 237 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝑇 = 1 → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))))) |
| 228 | 204, 227 | jaod 395 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 = 0 ∨ 𝑇 = 1) → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))))) |
| 229 | 181, 228,
91 | syl56 36 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝑇 ∈ {0, 1} → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))))) |
| 230 | | 0le1 10551 |
. . . . . 6
⊢ 0 ≤
1 |
| 231 | | prunioo 12301 |
. . . . . 6
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1)
→ ((0(,)1) ∪ {0, 1}) = (0[,]1)) |
| 232 | 106, 107,
230, 231 | mp3an 1424 |
. . . . 5
⊢ ((0(,)1)
∪ {0, 1}) = (0[,]1) |
| 233 | 59, 232 | syl6eleqr 2712 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → 𝑇 ∈ ((0(,)1) ∪ {0,
1})) |
| 234 | | elun 3753 |
. . . 4
⊢ (𝑇 ∈ ((0(,)1) ∪ {0, 1})
↔ (𝑇 ∈ (0(,)1)
∨ 𝑇 ∈ {0,
1})) |
| 235 | 233, 234 | sylib 208 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝑇 ∈ (0(,)1) ∨ 𝑇 ∈ {0, 1})) |
| 236 | 180, 229,
235 | mpjaod 396 |
. 2
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))))) |
| 237 | | scvxcvx.3 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) |
| 238 | 1, 237 | cvxcl 24711 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷) |
| 239 | 75, 238 | ffvelrnd 6360 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) ∈ ℝ) |
| 240 | 170, 167 | readdcld 10069 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) ∈ ℝ) |
| 241 | 239, 240 | leloed 10180 |
. 2
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) ≤ ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) ↔ ((𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) < ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌))) ∨ (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) = ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))))) |
| 242 | 236, 241 | mpbird 247 |
1
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ (0[,]1))) → (𝐹‘((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌))) ≤ ((𝑇 · (𝐹‘𝑋)) + ((1 − 𝑇) · (𝐹‘𝑌)))) |