MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem5 Structured version   Visualization version   Unicode version

Theorem 2sqlem5 25147
Description: Lemma for 2sq 25155. If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem5.1  |-  ( ph  ->  N  e.  NN )
2sqlem5.2  |-  ( ph  ->  P  e.  Prime )
2sqlem5.3  |-  ( ph  ->  ( N  x.  P
)  e.  S )
2sqlem5.4  |-  ( ph  ->  P  e.  S )
Assertion
Ref Expression
2sqlem5  |-  ( ph  ->  N  e.  S )

Proof of Theorem 2sqlem5
Dummy variables  p  q  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem5.4 . . 3  |-  ( ph  ->  P  e.  S )
2 2sq.1 . . . 4  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
322sqlem2 25143 . . 3  |-  ( P  e.  S  <->  E. p  e.  ZZ  E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) ) )
41, 3sylib 208 . 2  |-  ( ph  ->  E. p  e.  ZZ  E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) ) )
5 2sqlem5.3 . . 3  |-  ( ph  ->  ( N  x.  P
)  e.  S )
622sqlem2 25143 . . 3  |-  ( ( N  x.  P )  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
75, 6sylib 208 . 2  |-  ( ph  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
8 reeanv 3107 . . 3  |-  ( E. p  e.  ZZ  E. x  e.  ZZ  ( E. q  e.  ZZ  P  =  ( (
p ^ 2 )  +  ( q ^
2 ) )  /\  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( E. p  e.  ZZ  E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
9 reeanv 3107 . . . . 5  |-  ( E. q  e.  ZZ  E. y  e.  ZZ  ( P  =  ( (
p ^ 2 )  +  ( q ^
2 ) )  /\  ( N  x.  P
)  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <-> 
( E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
10 2sqlem5.1 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
1110ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  N  e.  NN )
12 2sqlem5.2 . . . . . . . . 9  |-  ( ph  ->  P  e.  Prime )
1312ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  P  e.  Prime )
14 simplrr 801 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  x  e.  ZZ )
15 simprlr 803 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  -> 
y  e.  ZZ )
16 simplrl 800 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  p  e.  ZZ )
17 simprll 802 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  -> 
q  e.  ZZ )
18 simprrr 805 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  -> 
( N  x.  P
)  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )
19 simprrl 804 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  P  =  ( (
p ^ 2 )  +  ( q ^
2 ) ) )
202, 11, 13, 14, 15, 16, 17, 18, 192sqlem4 25146 . . . . . . 7  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  N  e.  S )
2120expr 643 . . . . . 6  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( q  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( P  =  ( ( p ^
2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  ->  N  e.  S ) )
2221rexlimdvva 3038 . . . . 5  |-  ( (
ph  /\  ( p  e.  ZZ  /\  x  e.  ZZ ) )  -> 
( E. q  e.  ZZ  E. y  e.  ZZ  ( P  =  ( ( p ^
2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  ->  N  e.  S ) )
239, 22syl5bir 233 . . . 4  |-  ( (
ph  /\  ( p  e.  ZZ  /\  x  e.  ZZ ) )  -> 
( ( E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  ->  N  e.  S ) )
2423rexlimdvva 3038 . . 3  |-  ( ph  ->  ( E. p  e.  ZZ  E. x  e.  ZZ  ( E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  ->  N  e.  S ) )
258, 24syl5bir 233 . 2  |-  ( ph  ->  ( ( E. p  e.  ZZ  E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  ->  N  e.  S ) )
264, 7, 25mp2and 715 1  |-  ( ph  ->  N  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650    + caddc 9939    x. cmul 9941   NNcn 11020   2c2 11070   ZZcz 11377   ^cexp 12860   abscabs 13974   Primecprime 15385   ZZ[_i]cgz 15633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-gz 15634
This theorem is referenced by:  2sqlem6  25148
  Copyright terms: Public domain W3C validator