MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem4 Structured version   Visualization version   Unicode version

Theorem 2sqlem4 25146
Description: Lemma for 2sqlem5 25147. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem5.1  |-  ( ph  ->  N  e.  NN )
2sqlem5.2  |-  ( ph  ->  P  e.  Prime )
2sqlem4.3  |-  ( ph  ->  A  e.  ZZ )
2sqlem4.4  |-  ( ph  ->  B  e.  ZZ )
2sqlem4.5  |-  ( ph  ->  C  e.  ZZ )
2sqlem4.6  |-  ( ph  ->  D  e.  ZZ )
2sqlem4.7  |-  ( ph  ->  ( N  x.  P
)  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
2sqlem4.8  |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
Assertion
Ref Expression
2sqlem4  |-  ( ph  ->  N  e.  S )

Proof of Theorem 2sqlem4
StepHypRef Expression
1 2sq.1 . . 3  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2 2sqlem5.1 . . . 4  |-  ( ph  ->  N  e.  NN )
32adantr 481 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  N  e.  NN )
4 2sqlem5.2 . . . 4  |-  ( ph  ->  P  e.  Prime )
54adantr 481 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  P  e.  Prime )
6 2sqlem4.3 . . . 4  |-  ( ph  ->  A  e.  ZZ )
76adantr 481 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  A  e.  ZZ )
8 2sqlem4.4 . . . 4  |-  ( ph  ->  B  e.  ZZ )
98adantr 481 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  B  e.  ZZ )
10 2sqlem4.5 . . . 4  |-  ( ph  ->  C  e.  ZZ )
1110adantr 481 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  C  e.  ZZ )
12 2sqlem4.6 . . . 4  |-  ( ph  ->  D  e.  ZZ )
1312adantr 481 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  D  e.  ZZ )
14 2sqlem4.7 . . . 4  |-  ( ph  ->  ( N  x.  P
)  =  ( ( A ^ 2 )  +  ( B ^
2 ) ) )
1514adantr 481 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  ( N  x.  P )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
16 2sqlem4.8 . . . 4  |-  ( ph  ->  P  =  ( ( C ^ 2 )  +  ( D ^
2 ) ) )
1716adantr 481 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  P  =  ( ( C ^
2 )  +  ( D ^ 2 ) ) )
18 simpr 477 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )
191, 3, 5, 7, 9, 11, 13, 15, 17, 182sqlem3 25145 . 2  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  +  ( A  x.  D ) ) )  ->  N  e.  S )
202adantr 481 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  N  e.  NN )
214adantr 481 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  P  e.  Prime )
226znegcld 11484 . . . 4  |-  ( ph  -> 
-u A  e.  ZZ )
2322adantr 481 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  -u A  e.  ZZ )
248adantr 481 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  B  e.  ZZ )
2510adantr 481 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  C  e.  ZZ )
2612adantr 481 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  D  e.  ZZ )
276zcnd 11483 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
28 sqneg 12923 . . . . . . 7  |-  ( A  e.  CC  ->  ( -u A ^ 2 )  =  ( A ^
2 ) )
2927, 28syl 17 . . . . . 6  |-  ( ph  ->  ( -u A ^
2 )  =  ( A ^ 2 ) )
3029oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( -u A ^ 2 )  +  ( B ^ 2 ) )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
3114, 30eqtr4d 2659 . . . 4  |-  ( ph  ->  ( N  x.  P
)  =  ( (
-u A ^ 2 )  +  ( B ^ 2 ) ) )
3231adantr 481 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  ( N  x.  P )  =  ( ( -u A ^
2 )  +  ( B ^ 2 ) ) )
3316adantr 481 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  P  =  ( ( C ^
2 )  +  ( D ^ 2 ) ) )
3412zcnd 11483 . . . . . . . 8  |-  ( ph  ->  D  e.  CC )
3527, 34mulneg1d 10483 . . . . . . 7  |-  ( ph  ->  ( -u A  x.  D )  =  -u ( A  x.  D
) )
3635oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( ( C  x.  B )  +  (
-u A  x.  D
) )  =  ( ( C  x.  B
)  +  -u ( A  x.  D )
) )
3710, 8zmulcld 11488 . . . . . . . 8  |-  ( ph  ->  ( C  x.  B
)  e.  ZZ )
3837zcnd 11483 . . . . . . 7  |-  ( ph  ->  ( C  x.  B
)  e.  CC )
396, 12zmulcld 11488 . . . . . . . 8  |-  ( ph  ->  ( A  x.  D
)  e.  ZZ )
4039zcnd 11483 . . . . . . 7  |-  ( ph  ->  ( A  x.  D
)  e.  CC )
4138, 40negsubd 10398 . . . . . 6  |-  ( ph  ->  ( ( C  x.  B )  +  -u ( A  x.  D
) )  =  ( ( C  x.  B
)  -  ( A  x.  D ) ) )
4236, 41eqtrd 2656 . . . . 5  |-  ( ph  ->  ( ( C  x.  B )  +  (
-u A  x.  D
) )  =  ( ( C  x.  B
)  -  ( A  x.  D ) ) )
4342breq2d 4665 . . . 4  |-  ( ph  ->  ( P  ||  (
( C  x.  B
)  +  ( -u A  x.  D )
)  <->  P  ||  ( ( C  x.  B )  -  ( A  x.  D ) ) ) )
4443biimpar 502 . . 3  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  P  ||  (
( C  x.  B
)  +  ( -u A  x.  D )
) )
451, 20, 21, 23, 24, 25, 26, 32, 33, 442sqlem3 25145 . 2  |-  ( (
ph  /\  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) )  ->  N  e.  S )
46 prmz 15389 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
474, 46syl 17 . . . . 5  |-  ( ph  ->  P  e.  ZZ )
48 zsqcl 12934 . . . . . . . 8  |-  ( C  e.  ZZ  ->  ( C ^ 2 )  e.  ZZ )
4910, 48syl 17 . . . . . . 7  |-  ( ph  ->  ( C ^ 2 )  e.  ZZ )
502nnzd 11481 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
5149, 50zmulcld 11488 . . . . . 6  |-  ( ph  ->  ( ( C ^
2 )  x.  N
)  e.  ZZ )
52 zsqcl 12934 . . . . . . 7  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
536, 52syl 17 . . . . . 6  |-  ( ph  ->  ( A ^ 2 )  e.  ZZ )
5451, 53zsubcld 11487 . . . . 5  |-  ( ph  ->  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) )  e.  ZZ )
55 dvdsmul1 15003 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) )  e.  ZZ )  ->  P  ||  ( P  x.  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) ) ) )
5647, 54, 55syl2anc 693 . . . 4  |-  ( ph  ->  P  ||  ( P  x.  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) ) ) )
5710, 6zmulcld 11488 . . . . . . . . 9  |-  ( ph  ->  ( C  x.  A
)  e.  ZZ )
5857zcnd 11483 . . . . . . . 8  |-  ( ph  ->  ( C  x.  A
)  e.  CC )
5958sqcld 13006 . . . . . . 7  |-  ( ph  ->  ( ( C  x.  A ) ^ 2 )  e.  CC )
6038sqcld 13006 . . . . . . 7  |-  ( ph  ->  ( ( C  x.  B ) ^ 2 )  e.  CC )
6140sqcld 13006 . . . . . . 7  |-  ( ph  ->  ( ( A  x.  D ) ^ 2 )  e.  CC )
6259, 60, 61pnpcand 10429 . . . . . 6  |-  ( ph  ->  ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( C  x.  B ) ^ 2 ) )  -  (
( ( C  x.  A ) ^ 2 )  +  ( ( A  x.  D ) ^ 2 ) ) )  =  ( ( ( C  x.  B
) ^ 2 )  -  ( ( A  x.  D ) ^
2 ) ) )
6310zcnd 11483 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  CC )
6463, 27sqmuld 13020 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  x.  A ) ^ 2 )  =  ( ( C ^ 2 )  x.  ( A ^
2 ) ) )
658zcnd 11483 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  CC )
6663, 65sqmuld 13020 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  x.  B ) ^ 2 )  =  ( ( C ^ 2 )  x.  ( B ^
2 ) ) )
6764, 66oveq12d 6668 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( C  x.  B
) ^ 2 ) )  =  ( ( ( C ^ 2 )  x.  ( A ^ 2 ) )  +  ( ( C ^ 2 )  x.  ( B ^ 2 ) ) ) )
6863sqcld 13006 . . . . . . . . . . 11  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
6953zcnd 11483 . . . . . . . . . . 11  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
7065sqcld 13006 . . . . . . . . . . 11  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
7168, 69, 70adddid 10064 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
2 )  x.  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( ( ( C ^ 2 )  x.  ( A ^ 2 ) )  +  ( ( C ^ 2 )  x.  ( B ^ 2 ) ) ) )
7267, 71eqtr4d 2659 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( C  x.  B
) ^ 2 ) )  =  ( ( C ^ 2 )  x.  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) )
732nncnd 11036 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
7447zcnd 11483 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  CC )
7573, 74mulcomd 10061 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  x.  P
)  =  ( P  x.  N ) )
7614, 75eqtr3d 2658 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( P  x.  N ) )
7776oveq2d 6666 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
2 )  x.  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( ( C ^ 2 )  x.  ( P  x.  N ) ) )
7868, 74, 73mul12d 10245 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
2 )  x.  ( P  x.  N )
)  =  ( P  x.  ( ( C ^ 2 )  x.  N ) ) )
7977, 78eqtrd 2656 . . . . . . . . 9  |-  ( ph  ->  ( ( C ^
2 )  x.  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( P  x.  ( ( C ^ 2 )  x.  N ) ) )
8072, 79eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( C  x.  B
) ^ 2 ) )  =  ( P  x.  ( ( C ^ 2 )  x.  N ) ) )
8127, 34sqmuld 13020 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A  x.  D ) ^ 2 )  =  ( ( A ^ 2 )  x.  ( D ^
2 ) ) )
8234sqcld 13006 . . . . . . . . . . . . 13  |-  ( ph  ->  ( D ^ 2 )  e.  CC )
8369, 82mulcomd 10061 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A ^
2 )  x.  ( D ^ 2 ) )  =  ( ( D ^ 2 )  x.  ( A ^ 2 ) ) )
8481, 83eqtrd 2656 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  x.  D ) ^ 2 )  =  ( ( D ^ 2 )  x.  ( A ^
2 ) ) )
8564, 84oveq12d 6668 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( A  x.  D
) ^ 2 ) )  =  ( ( ( C ^ 2 )  x.  ( A ^ 2 ) )  +  ( ( D ^ 2 )  x.  ( A ^ 2 ) ) ) )
8649zcnd 11483 . . . . . . . . . . 11  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
8786, 82, 69adddird 10065 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  x.  ( A ^ 2 ) )  =  ( ( ( C ^ 2 )  x.  ( A ^
2 ) )  +  ( ( D ^
2 )  x.  ( A ^ 2 ) ) ) )
8885, 87eqtr4d 2659 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( A  x.  D
) ^ 2 ) )  =  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  x.  ( A ^
2 ) ) )
8916oveq1d 6665 . . . . . . . . 9  |-  ( ph  ->  ( P  x.  ( A ^ 2 ) )  =  ( ( ( C ^ 2 )  +  ( D ^
2 ) )  x.  ( A ^ 2 ) ) )
9088, 89eqtr4d 2659 . . . . . . . 8  |-  ( ph  ->  ( ( ( C  x.  A ) ^
2 )  +  ( ( A  x.  D
) ^ 2 ) )  =  ( P  x.  ( A ^
2 ) ) )
9180, 90oveq12d 6668 . . . . . . 7  |-  ( ph  ->  ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( C  x.  B ) ^ 2 ) )  -  (
( ( C  x.  A ) ^ 2 )  +  ( ( A  x.  D ) ^ 2 ) ) )  =  ( ( P  x.  ( ( C ^ 2 )  x.  N ) )  -  ( P  x.  ( A ^ 2 ) ) ) )
9251zcnd 11483 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
2 )  x.  N
)  e.  CC )
9374, 92, 69subdid 10486 . . . . . . 7  |-  ( ph  ->  ( P  x.  (
( ( C ^
2 )  x.  N
)  -  ( A ^ 2 ) ) )  =  ( ( P  x.  ( ( C ^ 2 )  x.  N ) )  -  ( P  x.  ( A ^ 2 ) ) ) )
9491, 93eqtr4d 2659 . . . . . 6  |-  ( ph  ->  ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( C  x.  B ) ^ 2 ) )  -  (
( ( C  x.  A ) ^ 2 )  +  ( ( A  x.  D ) ^ 2 ) ) )  =  ( P  x.  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) ) ) )
9562, 94eqtr3d 2658 . . . . 5  |-  ( ph  ->  ( ( ( C  x.  B ) ^
2 )  -  (
( A  x.  D
) ^ 2 ) )  =  ( P  x.  ( ( ( C ^ 2 )  x.  N )  -  ( A ^ 2 ) ) ) )
96 subsq 12972 . . . . . 6  |-  ( ( ( C  x.  B
)  e.  CC  /\  ( A  x.  D
)  e.  CC )  ->  ( ( ( C  x.  B ) ^ 2 )  -  ( ( A  x.  D ) ^ 2 ) )  =  ( ( ( C  x.  B )  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D ) ) ) )
9738, 40, 96syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( ( C  x.  B ) ^
2 )  -  (
( A  x.  D
) ^ 2 ) )  =  ( ( ( C  x.  B
)  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D
) ) ) )
9895, 97eqtr3d 2658 . . . 4  |-  ( ph  ->  ( P  x.  (
( ( C ^
2 )  x.  N
)  -  ( A ^ 2 ) ) )  =  ( ( ( C  x.  B
)  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D
) ) ) )
9956, 98breqtrd 4679 . . 3  |-  ( ph  ->  P  ||  ( ( ( C  x.  B
)  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D
) ) ) )
10037, 39zaddcld 11486 . . . 4  |-  ( ph  ->  ( ( C  x.  B )  +  ( A  x.  D ) )  e.  ZZ )
10137, 39zsubcld 11487 . . . 4  |-  ( ph  ->  ( ( C  x.  B )  -  ( A  x.  D )
)  e.  ZZ )
102 euclemma 15425 . . . 4  |-  ( ( P  e.  Prime  /\  (
( C  x.  B
)  +  ( A  x.  D ) )  e.  ZZ  /\  (
( C  x.  B
)  -  ( A  x.  D ) )  e.  ZZ )  -> 
( P  ||  (
( ( C  x.  B )  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D ) ) )  <-> 
( P  ||  (
( C  x.  B
)  +  ( A  x.  D ) )  \/  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) ) ) )
1034, 100, 101, 102syl3anc 1326 . . 3  |-  ( ph  ->  ( P  ||  (
( ( C  x.  B )  +  ( A  x.  D ) )  x.  ( ( C  x.  B )  -  ( A  x.  D ) ) )  <-> 
( P  ||  (
( C  x.  B
)  +  ( A  x.  D ) )  \/  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) ) ) )
10499, 103mpbid 222 . 2  |-  ( ph  ->  ( P  ||  (
( C  x.  B
)  +  ( A  x.  D ) )  \/  P  ||  (
( C  x.  B
)  -  ( A  x.  D ) ) ) )
10519, 45, 104mpjaodan 827 1  |-  ( ph  ->  N  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   CCcc 9934    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267   NNcn 11020   2c2 11070   ZZcz 11377   ^cexp 12860   abscabs 13974    || cdvds 14983   Primecprime 15385   ZZ[_i]cgz 15633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-gz 15634
This theorem is referenced by:  2sqlem5  25147
  Copyright terms: Public domain W3C validator