MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3cyclfrgr Structured version   Visualization version   Unicode version

Theorem 3cyclfrgr 27152
Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.)
Hypothesis
Ref Expression
3cyclfrgr.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
3cyclfrgr  |-  ( ( G  e. FriendGraph  /\  1  < 
( # `  V ) )  ->  A. v  e.  V  E. f E. p ( f (Cycles `  G ) p  /\  ( # `  f )  =  3  /\  (
p `  0 )  =  v ) )
Distinct variable groups:    f, G, p, v    v, V
Allowed substitution hints:    V( f, p)

Proof of Theorem 3cyclfrgr
Dummy variables  b 
c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3cyclfrgr.v . . 3  |-  V  =  (Vtx `  G )
2 eqid 2622 . . 3  |-  (Edg `  G )  =  (Edg
`  G )
31, 23cyclfrgrrn 27150 . 2  |-  ( ( G  e. FriendGraph  /\  1  < 
( # `  V ) )  ->  A. v  e.  V  E. b  e.  V  E. c  e.  V  ( {
v ,  b }  e.  (Edg `  G
)  /\  { b ,  c }  e.  (Edg `  G )  /\  { c ,  v }  e.  (Edg `  G
) ) )
4 frgrusgr 27124 . . . . . . . 8  |-  ( G  e. FriendGraph  ->  G  e. USGraph  )
5 usgrumgr 26074 . . . . . . . 8  |-  ( G  e. USGraph  ->  G  e. UMGraph  )
64, 5syl 17 . . . . . . 7  |-  ( G  e. FriendGraph  ->  G  e. UMGraph  )
76ad4antr 768 . . . . . 6  |-  ( ( ( ( ( G  e. FriendGraph  /\  1  <  ( # `
 V ) )  /\  v  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  ( { v ,  b }  e.  (Edg `  G )  /\  {
b ,  c }  e.  (Edg `  G
)  /\  { c ,  v }  e.  (Edg `  G ) ) )  ->  G  e. UMGraph  )
8 simpr 477 . . . . . . . . 9  |-  ( ( ( G  e. FriendGraph  /\  1  <  ( # `  V
) )  /\  v  e.  V )  ->  v  e.  V )
98anim1i 592 . . . . . . . 8  |-  ( ( ( ( G  e. FriendGraph  /\  1  <  ( # `  V ) )  /\  v  e.  V )  /\  ( b  e.  V  /\  c  e.  V
) )  ->  (
v  e.  V  /\  ( b  e.  V  /\  c  e.  V
) ) )
10 3anass 1042 . . . . . . . 8  |-  ( ( v  e.  V  /\  b  e.  V  /\  c  e.  V )  <->  ( v  e.  V  /\  ( b  e.  V  /\  c  e.  V
) ) )
119, 10sylibr 224 . . . . . . 7  |-  ( ( ( ( G  e. FriendGraph  /\  1  <  ( # `  V ) )  /\  v  e.  V )  /\  ( b  e.  V  /\  c  e.  V
) )  ->  (
v  e.  V  /\  b  e.  V  /\  c  e.  V )
)
1211adantr 481 . . . . . 6  |-  ( ( ( ( ( G  e. FriendGraph  /\  1  <  ( # `
 V ) )  /\  v  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  ( { v ,  b }  e.  (Edg `  G )  /\  {
b ,  c }  e.  (Edg `  G
)  /\  { c ,  v }  e.  (Edg `  G ) ) )  ->  ( v  e.  V  /\  b  e.  V  /\  c  e.  V ) )
13 simpr 477 . . . . . 6  |-  ( ( ( ( ( G  e. FriendGraph  /\  1  <  ( # `
 V ) )  /\  v  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  ( { v ,  b }  e.  (Edg `  G )  /\  {
b ,  c }  e.  (Edg `  G
)  /\  { c ,  v }  e.  (Edg `  G ) ) )  ->  ( {
v ,  b }  e.  (Edg `  G
)  /\  { b ,  c }  e.  (Edg `  G )  /\  { c ,  v }  e.  (Edg `  G
) ) )
141, 2umgr3cyclex 27043 . . . . . 6  |-  ( ( G  e. UMGraph  /\  (
v  e.  V  /\  b  e.  V  /\  c  e.  V )  /\  ( { v ,  b }  e.  (Edg
`  G )  /\  { b ,  c }  e.  (Edg `  G
)  /\  { c ,  v }  e.  (Edg `  G ) ) )  ->  E. f E. p ( f (Cycles `  G ) p  /\  ( # `  f )  =  3  /\  (
p `  0 )  =  v ) )
157, 12, 13, 14syl3anc 1326 . . . . 5  |-  ( ( ( ( ( G  e. FriendGraph  /\  1  <  ( # `
 V ) )  /\  v  e.  V
)  /\  ( b  e.  V  /\  c  e.  V ) )  /\  ( { v ,  b }  e.  (Edg `  G )  /\  {
b ,  c }  e.  (Edg `  G
)  /\  { c ,  v }  e.  (Edg `  G ) ) )  ->  E. f E. p ( f (Cycles `  G ) p  /\  ( # `  f )  =  3  /\  (
p `  0 )  =  v ) )
1615ex 450 . . . 4  |-  ( ( ( ( G  e. FriendGraph  /\  1  <  ( # `  V ) )  /\  v  e.  V )  /\  ( b  e.  V  /\  c  e.  V
) )  ->  (
( { v ,  b }  e.  (Edg
`  G )  /\  { b ,  c }  e.  (Edg `  G
)  /\  { c ,  v }  e.  (Edg `  G ) )  ->  E. f E. p
( f (Cycles `  G ) p  /\  ( # `  f )  =  3  /\  (
p `  0 )  =  v ) ) )
1716rexlimdvva 3038 . . 3  |-  ( ( ( G  e. FriendGraph  /\  1  <  ( # `  V
) )  /\  v  e.  V )  ->  ( E. b  e.  V  E. c  e.  V  ( { v ,  b }  e.  (Edg `  G )  /\  {
b ,  c }  e.  (Edg `  G
)  /\  { c ,  v }  e.  (Edg `  G ) )  ->  E. f E. p
( f (Cycles `  G ) p  /\  ( # `  f )  =  3  /\  (
p `  0 )  =  v ) ) )
1817ralimdva 2962 . 2  |-  ( ( G  e. FriendGraph  /\  1  < 
( # `  V ) )  ->  ( A. v  e.  V  E. b  e.  V  E. c  e.  V  ( { v ,  b }  e.  (Edg `  G )  /\  {
b ,  c }  e.  (Edg `  G
)  /\  { c ,  v }  e.  (Edg `  G ) )  ->  A. v  e.  V  E. f E. p ( f (Cycles `  G
) p  /\  ( # `
 f )  =  3  /\  ( p `
 0 )  =  v ) ) )
193, 18mpd 15 1  |-  ( ( G  e. FriendGraph  /\  1  < 
( # `  V ) )  ->  A. v  e.  V  E. f E. p ( f (Cycles `  G ) p  /\  ( # `  f )  =  3  /\  (
p `  0 )  =  v ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   {cpr 4179   class class class wbr 4653   ` cfv 5888   0cc0 9936   1c1 9937    < clt 10074   3c3 11071   #chash 13117  Vtxcvtx 25874  Edgcedg 25939   UMGraph cumgr 25976   USGraph cusgr 26044  Cyclesccycls 26680   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-s4 13595  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-usgr 26046  df-wlks 26495  df-trls 26589  df-pths 26612  df-cycls 26682  df-frgr 27121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator