| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abvneg | Structured version Visualization version Unicode version | ||
| Description: The absolute value of a negative is the same as that of the positive. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| Ref | Expression |
|---|---|
| abv0.a |
|
| abvneg.b |
|
| abvneg.p |
|
| Ref | Expression |
|---|---|
| abvneg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abv0.a |
. . . . . . 7
| |
| 2 | 1 | abvrcl 18821 |
. . . . . 6
|
| 3 | 2 | adantr 481 |
. . . . 5
|
| 4 | ringgrp 18552 |
. . . . . . 7
| |
| 5 | 2, 4 | syl 17 |
. . . . . 6
|
| 6 | abvneg.b |
. . . . . . 7
| |
| 7 | abvneg.p |
. . . . . . 7
| |
| 8 | 6, 7 | grpinvcl 17467 |
. . . . . 6
|
| 9 | 5, 8 | sylan 488 |
. . . . 5
|
| 10 | simpr 477 |
. . . . 5
| |
| 11 | eqid 2622 |
. . . . . 6
| |
| 12 | eqid 2622 |
. . . . . 6
| |
| 13 | 6, 11, 12 | ring1eq0 18590 |
. . . . 5
|
| 14 | 3, 9, 10, 13 | syl3anc 1326 |
. . . 4
|
| 15 | 14 | imp 445 |
. . 3
|
| 16 | 15 | fveq2d 6195 |
. 2
|
| 17 | 6, 11 | ringidcl 18568 |
. . . . . . . . . . . . . . . 16
|
| 18 | 2, 17 | syl 17 |
. . . . . . . . . . . . . . 15
|
| 19 | 6, 7 | grpinvcl 17467 |
. . . . . . . . . . . . . . 15
|
| 20 | 5, 18, 19 | syl2anc 693 |
. . . . . . . . . . . . . 14
|
| 21 | 1, 6 | abvcl 18824 |
. . . . . . . . . . . . . 14
|
| 22 | 20, 21 | mpdan 702 |
. . . . . . . . . . . . 13
|
| 23 | 22 | recnd 10068 |
. . . . . . . . . . . 12
|
| 24 | 23 | sqvald 13005 |
. . . . . . . . . . 11
|
| 25 | eqid 2622 |
. . . . . . . . . . . . 13
| |
| 26 | 1, 6, 25 | abvmul 18829 |
. . . . . . . . . . . 12
|
| 27 | 20, 20, 26 | mpd3an23 1426 |
. . . . . . . . . . 11
|
| 28 | 6, 25, 7, 2, 20, 18 | ringmneg2 18597 |
. . . . . . . . . . . . 13
|
| 29 | 6, 25, 11, 7, 2, 18 | ringnegl 18594 |
. . . . . . . . . . . . . 14
|
| 30 | 29 | fveq2d 6195 |
. . . . . . . . . . . . 13
|
| 31 | 6, 7 | grpinvinv 17482 |
. . . . . . . . . . . . . 14
|
| 32 | 5, 18, 31 | syl2anc 693 |
. . . . . . . . . . . . 13
|
| 33 | 28, 30, 32 | 3eqtrd 2660 |
. . . . . . . . . . . 12
|
| 34 | 33 | fveq2d 6195 |
. . . . . . . . . . 11
|
| 35 | 24, 27, 34 | 3eqtr2d 2662 |
. . . . . . . . . 10
|
| 36 | 35 | adantr 481 |
. . . . . . . . 9
|
| 37 | 1, 11, 12 | abv1z 18832 |
. . . . . . . . 9
|
| 38 | 36, 37 | eqtrd 2656 |
. . . . . . . 8
|
| 39 | sq1 12958 |
. . . . . . . 8
| |
| 40 | 38, 39 | syl6eqr 2674 |
. . . . . . 7
|
| 41 | 1, 6 | abvge0 18825 |
. . . . . . . . . 10
|
| 42 | 20, 41 | mpdan 702 |
. . . . . . . . 9
|
| 43 | 1re 10039 |
. . . . . . . . . 10
| |
| 44 | 0le1 10551 |
. . . . . . . . . 10
| |
| 45 | sq11 12936 |
. . . . . . . . . 10
| |
| 46 | 43, 44, 45 | mpanr12 721 |
. . . . . . . . 9
|
| 47 | 22, 42, 46 | syl2anc 693 |
. . . . . . . 8
|
| 48 | 47 | biimpa 501 |
. . . . . . 7
|
| 49 | 40, 48 | syldan 487 |
. . . . . 6
|
| 50 | 49 | adantlr 751 |
. . . . 5
|
| 51 | 50 | oveq1d 6665 |
. . . 4
|
| 52 | simpl 473 |
. . . . . . 7
| |
| 53 | 20 | adantr 481 |
. . . . . . 7
|
| 54 | 1, 6, 25 | abvmul 18829 |
. . . . . . 7
|
| 55 | 52, 53, 10, 54 | syl3anc 1326 |
. . . . . 6
|
| 56 | 6, 25, 11, 7, 3, 10 | ringnegl 18594 |
. . . . . . 7
|
| 57 | 56 | fveq2d 6195 |
. . . . . 6
|
| 58 | 55, 57 | eqtr3d 2658 |
. . . . 5
|
| 59 | 58 | adantr 481 |
. . . 4
|
| 60 | 51, 59 | eqtr3d 2658 |
. . 3
|
| 61 | 1, 6 | abvcl 18824 |
. . . . . 6
|
| 62 | 61 | recnd 10068 |
. . . . 5
|
| 63 | 62 | mulid2d 10058 |
. . . 4
|
| 64 | 63 | adantr 481 |
. . 3
|
| 65 | 60, 64 | eqtr3d 2658 |
. 2
|
| 66 | 16, 65 | pm2.61dane 2881 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-ico 12181 df-seq 12802 df-exp 12861 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-mgp 18490 df-ur 18502 df-ring 18549 df-abv 18817 |
| This theorem is referenced by: abvsubtri 18835 ostthlem1 25316 ostth3 25327 |
| Copyright terms: Public domain | W3C validator |