MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvneg Structured version   Visualization version   Unicode version

Theorem abvneg 18834
Description: The absolute value of a negative is the same as that of the positive. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abv0.a  |-  A  =  (AbsVal `  R )
abvneg.b  |-  B  =  ( Base `  R
)
abvneg.p  |-  N  =  ( invg `  R )
Assertion
Ref Expression
abvneg  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  ( N `  X )
)  =  ( F `
 X ) )

Proof of Theorem abvneg
StepHypRef Expression
1 abv0.a . . . . . . 7  |-  A  =  (AbsVal `  R )
21abvrcl 18821 . . . . . 6  |-  ( F  e.  A  ->  R  e.  Ring )
32adantr 481 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  R  e.  Ring )
4 ringgrp 18552 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
52, 4syl 17 . . . . . 6  |-  ( F  e.  A  ->  R  e.  Grp )
6 abvneg.b . . . . . . 7  |-  B  =  ( Base `  R
)
7 abvneg.p . . . . . . 7  |-  N  =  ( invg `  R )
86, 7grpinvcl 17467 . . . . . 6  |-  ( ( R  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
95, 8sylan 488 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
10 simpr 477 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  X  e.  B )
11 eqid 2622 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
12 eqid 2622 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
136, 11, 12ring1eq0 18590 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N `  X )  e.  B  /\  X  e.  B )  ->  (
( 1r `  R
)  =  ( 0g
`  R )  -> 
( N `  X
)  =  X ) )
143, 9, 10, 13syl3anc 1326 . . . 4  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( ( 1r `  R )  =  ( 0g `  R )  ->  ( N `  X )  =  X ) )
1514imp 445 . . 3  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =  ( 0g `  R ) )  ->  ( N `  X )  =  X )
1615fveq2d 6195 . 2  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =  ( 0g `  R ) )  ->  ( F `  ( N `  X
) )  =  ( F `  X ) )
176, 11ringidcl 18568 . . . . . . . . . . . . . . . 16  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  B )
182, 17syl 17 . . . . . . . . . . . . . . 15  |-  ( F  e.  A  ->  ( 1r `  R )  e.  B )
196, 7grpinvcl 17467 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  Grp  /\  ( 1r `  R )  e.  B )  -> 
( N `  ( 1r `  R ) )  e.  B )
205, 18, 19syl2anc 693 . . . . . . . . . . . . . 14  |-  ( F  e.  A  ->  ( N `  ( 1r `  R ) )  e.  B )
211, 6abvcl 18824 . . . . . . . . . . . . . 14  |-  ( ( F  e.  A  /\  ( N `  ( 1r
`  R ) )  e.  B )  -> 
( F `  ( N `  ( 1r `  R ) ) )  e.  RR )
2220, 21mpdan 702 . . . . . . . . . . . . 13  |-  ( F  e.  A  ->  ( F `  ( N `  ( 1r `  R
) ) )  e.  RR )
2322recnd 10068 . . . . . . . . . . . 12  |-  ( F  e.  A  ->  ( F `  ( N `  ( 1r `  R
) ) )  e.  CC )
2423sqvald 13005 . . . . . . . . . . 11  |-  ( F  e.  A  ->  (
( F `  ( N `  ( 1r `  R ) ) ) ^ 2 )  =  ( ( F `  ( N `  ( 1r
`  R ) ) )  x.  ( F `
 ( N `  ( 1r `  R ) ) ) ) )
25 eqid 2622 . . . . . . . . . . . . 13  |-  ( .r
`  R )  =  ( .r `  R
)
261, 6, 25abvmul 18829 . . . . . . . . . . . 12  |-  ( ( F  e.  A  /\  ( N `  ( 1r
`  R ) )  e.  B  /\  ( N `  ( 1r `  R ) )  e.  B )  ->  ( F `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) ( N `  ( 1r `  R ) ) ) )  =  ( ( F `  ( N `  ( 1r `  R ) ) )  x.  ( F `  ( N `  ( 1r
`  R ) ) ) ) )
2720, 20, 26mpd3an23 1426 . . . . . . . . . . 11  |-  ( F  e.  A  ->  ( F `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) ( N `  ( 1r `  R ) ) ) )  =  ( ( F `  ( N `  ( 1r `  R ) ) )  x.  ( F `  ( N `  ( 1r
`  R ) ) ) ) )
286, 25, 7, 2, 20, 18ringmneg2 18597 . . . . . . . . . . . . 13  |-  ( F  e.  A  ->  (
( N `  ( 1r `  R ) ) ( .r `  R
) ( N `  ( 1r `  R ) ) )  =  ( N `  ( ( N `  ( 1r
`  R ) ) ( .r `  R
) ( 1r `  R ) ) ) )
296, 25, 11, 7, 2, 18ringnegl 18594 . . . . . . . . . . . . . 14  |-  ( F  e.  A  ->  (
( N `  ( 1r `  R ) ) ( .r `  R
) ( 1r `  R ) )  =  ( N `  ( 1r `  R ) ) )
3029fveq2d 6195 . . . . . . . . . . . . 13  |-  ( F  e.  A  ->  ( N `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) ( 1r `  R
) ) )  =  ( N `  ( N `  ( 1r `  R ) ) ) )
316, 7grpinvinv 17482 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Grp  /\  ( 1r `  R )  e.  B )  -> 
( N `  ( N `  ( 1r `  R ) ) )  =  ( 1r `  R ) )
325, 18, 31syl2anc 693 . . . . . . . . . . . . 13  |-  ( F  e.  A  ->  ( N `  ( N `  ( 1r `  R
) ) )  =  ( 1r `  R
) )
3328, 30, 323eqtrd 2660 . . . . . . . . . . . 12  |-  ( F  e.  A  ->  (
( N `  ( 1r `  R ) ) ( .r `  R
) ( N `  ( 1r `  R ) ) )  =  ( 1r `  R ) )
3433fveq2d 6195 . . . . . . . . . . 11  |-  ( F  e.  A  ->  ( F `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) ( N `  ( 1r `  R ) ) ) )  =  ( F `  ( 1r
`  R ) ) )
3524, 27, 343eqtr2d 2662 . . . . . . . . . 10  |-  ( F  e.  A  ->  (
( F `  ( N `  ( 1r `  R ) ) ) ^ 2 )  =  ( F `  ( 1r `  R ) ) )
3635adantr 481 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  ( F `  ( 1r `  R ) ) )
371, 11, 12abv1z 18832 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( F `  ( 1r `  R ) )  =  1 )
3836, 37eqtrd 2656 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  1 )
39 sq1 12958 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
4038, 39syl6eqr 2674 . . . . . . 7  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  ( 1 ^ 2 ) )
411, 6abvge0 18825 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( N `  ( 1r
`  R ) )  e.  B )  -> 
0  <_  ( F `  ( N `  ( 1r `  R ) ) ) )
4220, 41mpdan 702 . . . . . . . . 9  |-  ( F  e.  A  ->  0  <_  ( F `  ( N `  ( 1r `  R ) ) ) )
43 1re 10039 . . . . . . . . . 10  |-  1  e.  RR
44 0le1 10551 . . . . . . . . . 10  |-  0  <_  1
45 sq11 12936 . . . . . . . . . 10  |-  ( ( ( ( F `  ( N `  ( 1r
`  R ) ) )  e.  RR  /\  0  <_  ( F `  ( N `  ( 1r
`  R ) ) ) )  /\  (
1  e.  RR  /\  0  <_  1 ) )  ->  ( ( ( F `  ( N `
 ( 1r `  R ) ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( F `  ( N `  ( 1r
`  R ) ) )  =  1 ) )
4643, 44, 45mpanr12 721 . . . . . . . . 9  |-  ( ( ( F `  ( N `  ( 1r `  R ) ) )  e.  RR  /\  0  <_  ( F `  ( N `  ( 1r `  R ) ) ) )  ->  ( (
( F `  ( N `  ( 1r `  R ) ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( F `  ( N `  ( 1r
`  R ) ) )  =  1 ) )
4722, 42, 46syl2anc 693 . . . . . . . 8  |-  ( F  e.  A  ->  (
( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  ( 1 ^ 2 )  <->  ( F `  ( N `  ( 1r `  R ) ) )  =  1 ) )
4847biimpa 501 . . . . . . 7  |-  ( ( F  e.  A  /\  ( ( F `  ( N `  ( 1r
`  R ) ) ) ^ 2 )  =  ( 1 ^ 2 ) )  -> 
( F `  ( N `  ( 1r `  R ) ) )  =  1 )
4940, 48syldan 487 . . . . . 6  |-  ( ( F  e.  A  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  -> 
( F `  ( N `  ( 1r `  R ) ) )  =  1 )
5049adantlr 751 . . . . 5  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( F `  ( N `  ( 1r
`  R ) ) )  =  1 )
5150oveq1d 6665 . . . 4  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( ( F `
 ( N `  ( 1r `  R ) ) )  x.  ( F `  X )
)  =  ( 1  x.  ( F `  X ) ) )
52 simpl 473 . . . . . . 7  |-  ( ( F  e.  A  /\  X  e.  B )  ->  F  e.  A )
5320adantr 481 . . . . . . 7  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( N `  ( 1r `  R ) )  e.  B )
541, 6, 25abvmul 18829 . . . . . . 7  |-  ( ( F  e.  A  /\  ( N `  ( 1r
`  R ) )  e.  B  /\  X  e.  B )  ->  ( F `  ( ( N `  ( 1r `  R ) ) ( .r `  R ) X ) )  =  ( ( F `  ( N `  ( 1r
`  R ) ) )  x.  ( F `
 X ) ) )
5552, 53, 10, 54syl3anc 1326 . . . . . 6  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  (
( N `  ( 1r `  R ) ) ( .r `  R
) X ) )  =  ( ( F `
 ( N `  ( 1r `  R ) ) )  x.  ( F `  X )
) )
566, 25, 11, 7, 3, 10ringnegl 18594 . . . . . . 7  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( ( N `  ( 1r `  R ) ) ( .r `  R ) X )  =  ( N `  X ) )
5756fveq2d 6195 . . . . . 6  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  (
( N `  ( 1r `  R ) ) ( .r `  R
) X ) )  =  ( F `  ( N `  X ) ) )
5855, 57eqtr3d 2658 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( ( F `  ( N `  ( 1r
`  R ) ) )  x.  ( F `
 X ) )  =  ( F `  ( N `  X ) ) )
5958adantr 481 . . . 4  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( ( F `
 ( N `  ( 1r `  R ) ) )  x.  ( F `  X )
)  =  ( F `
 ( N `  X ) ) )
6051, 59eqtr3d 2658 . . 3  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( 1  x.  ( F `  X
) )  =  ( F `  ( N `
 X ) ) )
611, 6abvcl 18824 . . . . . 6  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  X
)  e.  RR )
6261recnd 10068 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  X
)  e.  CC )
6362mulid2d 10058 . . . 4  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( 1  x.  ( F `  X )
)  =  ( F `
 X ) )
6463adantr 481 . . 3  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( 1  x.  ( F `  X
) )  =  ( F `  X ) )
6560, 64eqtr3d 2658 . 2  |-  ( ( ( F  e.  A  /\  X  e.  B
)  /\  ( 1r `  R )  =/=  ( 0g `  R ) )  ->  ( F `  ( N `  X ) )  =  ( F `
 X ) )
6616, 65pm2.61dane 2881 1  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  ( N `  X )
)  =  ( F `
 X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    <_ cle 10075   2c2 11070   ^cexp 12860   Basecbs 15857   .rcmulr 15942   0gc0g 16100   Grpcgrp 17422   invgcminusg 17423   1rcur 18501   Ringcrg 18547  AbsValcabv 18816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-ico 12181  df-seq 12802  df-exp 12861  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-abv 18817
This theorem is referenced by:  abvsubtri  18835  ostthlem1  25316  ostth3  25327
  Copyright terms: Public domain W3C validator