MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsmap2d Structured version   Visualization version   Unicode version

Theorem acsmap2d 17179
Description: In an algebraic closure system, if  S and  T have the same closure and  S is independent, then there is a map  f from  T into the set of finite subsets of  S such that  S equals the union of  ran  f. This is proven by taking the map  f from acsmapd 17178 and observing that, since  S and  T have the same closure, the closure of  U. ran  f must contain  S. Since  S is independent, by mrissmrcd 16300,  U. ran  f must equal  S. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsmap2d.1  |-  ( ph  ->  A  e.  (ACS `  X ) )
acsmap2d.2  |-  N  =  (mrCls `  A )
acsmap2d.3  |-  I  =  (mrInd `  A )
acsmap2d.4  |-  ( ph  ->  S  e.  I )
acsmap2d.5  |-  ( ph  ->  T  C_  X )
acsmap2d.6  |-  ( ph  ->  ( N `  S
)  =  ( N `
 T ) )
Assertion
Ref Expression
acsmap2d  |-  ( ph  ->  E. f ( f : T --> ( ~P S  i^i  Fin )  /\  S  =  U. ran  f ) )
Distinct variable groups:    S, f    T, f    ph, f    f, N
Allowed substitution hints:    A( f)    I(
f)    X( f)

Proof of Theorem acsmap2d
StepHypRef Expression
1 acsmap2d.1 . . 3  |-  ( ph  ->  A  e.  (ACS `  X ) )
2 acsmap2d.2 . . 3  |-  N  =  (mrCls `  A )
3 acsmap2d.3 . . . 4  |-  I  =  (mrInd `  A )
41acsmred 16317 . . . 4  |-  ( ph  ->  A  e.  (Moore `  X ) )
5 acsmap2d.4 . . . 4  |-  ( ph  ->  S  e.  I )
63, 4, 5mrissd 16296 . . 3  |-  ( ph  ->  S  C_  X )
7 acsmap2d.5 . . . . 5  |-  ( ph  ->  T  C_  X )
84, 2, 7mrcssidd 16285 . . . 4  |-  ( ph  ->  T  C_  ( N `  T ) )
9 acsmap2d.6 . . . 4  |-  ( ph  ->  ( N `  S
)  =  ( N `
 T ) )
108, 9sseqtr4d 3642 . . 3  |-  ( ph  ->  T  C_  ( N `  S ) )
111, 2, 6, 10acsmapd 17178 . 2  |-  ( ph  ->  E. f ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `
 U. ran  f
) ) )
12 simprl 794 . . . . 5  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) )  ->  f : T --> ( ~P S  i^i  Fin ) )
134adantr 481 . . . . . 6  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) )  ->  A  e.  (Moore `  X ) )
145adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) )  ->  S  e.  I
)
153, 13, 14mrissd 16296 . . . . . . . 8  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) )  ->  S  C_  X
)
1613, 2, 15mrcssidd 16285 . . . . . . 7  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) )  ->  S  C_  ( N `  S )
)
179adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) )  ->  ( N `  S )  =  ( N `  T ) )
18 simprr 796 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) )  ->  T  C_  ( N `  U. ran  f
) )
1913, 2mrcssvd 16283 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) )  ->  ( N `  U. ran  f )  C_  X )
2013, 2, 18, 19mrcssd 16284 . . . . . . . . 9  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) )  ->  ( N `  T )  C_  ( N `  ( N `  U. ran  f ) ) )
21 frn 6053 . . . . . . . . . . . . . 14  |-  ( f : T --> ( ~P S  i^i  Fin )  ->  ran  f  C_  ( ~P S  i^i  Fin )
)
2221unissd 4462 . . . . . . . . . . . . 13  |-  ( f : T --> ( ~P S  i^i  Fin )  ->  U. ran  f  C_  U. ( ~P S  i^i  Fin ) )
23 unifpw 8269 . . . . . . . . . . . . 13  |-  U. ( ~P S  i^i  Fin )  =  S
2422, 23syl6sseq 3651 . . . . . . . . . . . 12  |-  ( f : T --> ( ~P S  i^i  Fin )  ->  U. ran  f  C_  S )
2524ad2antrl 764 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) )  ->  U. ran  f  C_  S )
2625, 15sstrd 3613 . . . . . . . . . 10  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) )  ->  U. ran  f  C_  X )
2713, 2, 26mrcidmd 16286 . . . . . . . . 9  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) )  ->  ( N `  ( N `  U. ran  f ) )  =  ( N `  U. ran  f ) )
2820, 27sseqtrd 3641 . . . . . . . 8  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) )  ->  ( N `  T )  C_  ( N `  U. ran  f
) )
2917, 28eqsstrd 3639 . . . . . . 7  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) )  ->  ( N `  S )  C_  ( N `  U. ran  f
) )
3016, 29sstrd 3613 . . . . . 6  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) )  ->  S  C_  ( N `  U. ran  f
) )
3113, 2, 3, 30, 25, 14mrissmrcd 16300 . . . . 5  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) )  ->  S  =  U. ran  f )
3212, 31jca 554 . . . 4  |-  ( (
ph  /\  ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) ) )  ->  ( f : T --> ( ~P S  i^i  Fin )  /\  S  =  U. ran  f ) )
3332ex 450 . . 3  |-  ( ph  ->  ( ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `  U. ran  f ) )  -> 
( f : T --> ( ~P S  i^i  Fin )  /\  S  =  U. ran  f ) ) )
3433eximdv 1846 . 2  |-  ( ph  ->  ( E. f ( f : T --> ( ~P S  i^i  Fin )  /\  T  C_  ( N `
 U. ran  f
) )  ->  E. f
( f : T --> ( ~P S  i^i  Fin )  /\  S  =  U. ran  f ) ) )
3511, 34mpd 15 1  |-  ( ph  ->  E. f ( f : T --> ( ~P S  i^i  Fin )  /\  S  =  U. ran  f ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   ran crn 5115   -->wf 5884   ` cfv 5888   Fincfn 7955  Moorecmre 16242  mrClscmrc 16243  mrIndcmri 16244  ACScacs 16245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-r1 8627  df-rank 8628  df-card 8765  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-tset 15960  df-ple 15961  df-ocomp 15963  df-mre 16246  df-mrc 16247  df-mri 16248  df-acs 16249  df-preset 16928  df-drs 16929  df-poset 16946  df-ipo 17152
This theorem is referenced by:  acsinfd  17180  acsdomd  17181
  Copyright terms: Public domain W3C validator