Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem4 Structured version   Visualization version   Unicode version

Theorem ballotlem4 30560
Description: If the first pick is a vote for B, A is not ahead throughout the count. (Contributed by Thierry Arnoux, 25-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
Assertion
Ref Expression
ballotlem4  |-  ( C  e.  O  ->  ( -.  1  e.  C  ->  -.  C  e.  E
) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O, c    F, c, i    C, i
Allowed substitution hints:    C( x, c)    P( x, i, c)    E( x, i, c)    F( x)    M( x)    N( x)    O( x)

Proof of Theorem ballotlem4
StepHypRef Expression
1 ballotth.m . . . . . . . 8  |-  M  e.  NN
2 ballotth.n . . . . . . . 8  |-  N  e.  NN
3 nnaddcl 11042 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
41, 2, 3mp2an 708 . . . . . . 7  |-  ( M  +  N )  e.  NN
5 elnnuz 11724 . . . . . . 7  |-  ( ( M  +  N )  e.  NN  <->  ( M  +  N )  e.  (
ZZ>= `  1 ) )
64, 5mpbi 220 . . . . . 6  |-  ( M  +  N )  e.  ( ZZ>= `  1 )
7 eluzfz1 12348 . . . . . 6  |-  ( ( M  +  N )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( M  +  N )
) )
86, 7ax-mp 5 . . . . 5  |-  1  e.  ( 1 ... ( M  +  N )
)
9 0le1 10551 . . . . . . . . . 10  |-  0  <_  1
10 0re 10040 . . . . . . . . . . 11  |-  0  e.  RR
11 1re 10039 . . . . . . . . . . 11  |-  1  e.  RR
1210, 11lenlti 10157 . . . . . . . . . 10  |-  ( 0  <_  1  <->  -.  1  <  0 )
139, 12mpbi 220 . . . . . . . . 9  |-  -.  1  <  0
14 ltsub13 10509 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  0  e.  RR  /\  1  e.  RR )  ->  (
0  <  ( 0  -  1 )  <->  1  <  ( 0  -  0 ) ) )
1510, 10, 11, 14mp3an 1424 . . . . . . . . . 10  |-  ( 0  <  ( 0  -  1 )  <->  1  <  ( 0  -  0 ) )
16 0m0e0 11130 . . . . . . . . . . 11  |-  ( 0  -  0 )  =  0
1716breq2i 4661 . . . . . . . . . 10  |-  ( 1  <  ( 0  -  0 )  <->  1  <  0 )
1815, 17bitri 264 . . . . . . . . 9  |-  ( 0  <  ( 0  -  1 )  <->  1  <  0 )
1913, 18mtbir 313 . . . . . . . 8  |-  -.  0  <  ( 0  -  1 )
20 1m1e0 11089 . . . . . . . . . . . 12  |-  ( 1  -  1 )  =  0
2120fveq2i 6194 . . . . . . . . . . 11  |-  ( ( F `  C ) `
 ( 1  -  1 ) )  =  ( ( F `  C ) `  0
)
22 ballotth.o . . . . . . . . . . . 12  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
23 ballotth.p . . . . . . . . . . . 12  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
24 ballotth.f . . . . . . . . . . . 12  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
251, 2, 22, 23, 24ballotlemfval0 30557 . . . . . . . . . . 11  |-  ( C  e.  O  ->  (
( F `  C
) `  0 )  =  0 )
2621, 25syl5eq 2668 . . . . . . . . . 10  |-  ( C  e.  O  ->  (
( F `  C
) `  ( 1  -  1 ) )  =  0 )
2726oveq1d 6665 . . . . . . . . 9  |-  ( C  e.  O  ->  (
( ( F `  C ) `  (
1  -  1 ) )  -  1 )  =  ( 0  -  1 ) )
2827breq2d 4665 . . . . . . . 8  |-  ( C  e.  O  ->  (
0  <  ( (
( F `  C
) `  ( 1  -  1 ) )  -  1 )  <->  0  <  ( 0  -  1 ) ) )
2919, 28mtbiri 317 . . . . . . 7  |-  ( C  e.  O  ->  -.  0  <  ( ( ( F `  C ) `
 ( 1  -  1 ) )  - 
1 ) )
3029adantr 481 . . . . . 6  |-  ( ( C  e.  O  /\  -.  1  e.  C
)  ->  -.  0  <  ( ( ( F `
 C ) `  ( 1  -  1 ) )  -  1 ) )
31 simpl 473 . . . . . . . . . . 11  |-  ( ( C  e.  O  /\  1  e.  ( 1 ... ( M  +  N ) ) )  ->  C  e.  O
)
32 1nn 11031 . . . . . . . . . . . 12  |-  1  e.  NN
3332a1i 11 . . . . . . . . . . 11  |-  ( ( C  e.  O  /\  1  e.  ( 1 ... ( M  +  N ) ) )  ->  1  e.  NN )
341, 2, 22, 23, 24, 31, 33ballotlemfp1 30553 . . . . . . . . . 10  |-  ( ( C  e.  O  /\  1  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( -.  1  e.  C  -> 
( ( F `  C ) `  1
)  =  ( ( ( F `  C
) `  ( 1  -  1 ) )  -  1 ) )  /\  ( 1  e.  C  ->  ( ( F `  C ) `  1 )  =  ( ( ( F `
 C ) `  ( 1  -  1 ) )  +  1 ) ) ) )
3534simpld 475 . . . . . . . . 9  |-  ( ( C  e.  O  /\  1  e.  ( 1 ... ( M  +  N ) ) )  ->  ( -.  1  e.  C  ->  ( ( F `  C ) `
 1 )  =  ( ( ( F `
 C ) `  ( 1  -  1 ) )  -  1 ) ) )
368, 35mpan2 707 . . . . . . . 8  |-  ( C  e.  O  ->  ( -.  1  e.  C  ->  ( ( F `  C ) `  1
)  =  ( ( ( F `  C
) `  ( 1  -  1 ) )  -  1 ) ) )
3736imp 445 . . . . . . 7  |-  ( ( C  e.  O  /\  -.  1  e.  C
)  ->  ( ( F `  C ) `  1 )  =  ( ( ( F `
 C ) `  ( 1  -  1 ) )  -  1 ) )
3837breq2d 4665 . . . . . 6  |-  ( ( C  e.  O  /\  -.  1  e.  C
)  ->  ( 0  <  ( ( F `
 C ) ` 
1 )  <->  0  <  ( ( ( F `  C ) `  (
1  -  1 ) )  -  1 ) ) )
3930, 38mtbird 315 . . . . 5  |-  ( ( C  e.  O  /\  -.  1  e.  C
)  ->  -.  0  <  ( ( F `  C ) `  1
) )
40 fveq2 6191 . . . . . . . 8  |-  ( i  =  1  ->  (
( F `  C
) `  i )  =  ( ( F `
 C ) ` 
1 ) )
4140breq2d 4665 . . . . . . 7  |-  ( i  =  1  ->  (
0  <  ( ( F `  C ) `  i )  <->  0  <  ( ( F `  C
) `  1 )
) )
4241notbid 308 . . . . . 6  |-  ( i  =  1  ->  ( -.  0  <  ( ( F `  C ) `
 i )  <->  -.  0  <  ( ( F `  C ) `  1
) ) )
4342rspcev 3309 . . . . 5  |-  ( ( 1  e.  ( 1 ... ( M  +  N ) )  /\  -.  0  <  ( ( F `  C ) `
 1 ) )  ->  E. i  e.  ( 1 ... ( M  +  N ) )  -.  0  <  (
( F `  C
) `  i )
)
448, 39, 43sylancr 695 . . . 4  |-  ( ( C  e.  O  /\  -.  1  e.  C
)  ->  E. i  e.  ( 1 ... ( M  +  N )
)  -.  0  < 
( ( F `  C ) `  i
) )
45 rexnal 2995 . . . 4  |-  ( E. i  e.  ( 1 ... ( M  +  N ) )  -.  0  <  ( ( F `  C ) `
 i )  <->  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
)
4644, 45sylib 208 . . 3  |-  ( ( C  e.  O  /\  -.  1  e.  C
)  ->  -.  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
)
47 ballotth.e . . . . 5  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
481, 2, 22, 23, 24, 47ballotleme 30558 . . . 4  |-  ( C  e.  E  <->  ( C  e.  O  /\  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
) )
4948simprbi 480 . . 3  |-  ( C  e.  E  ->  A. i  e.  ( 1 ... ( M  +  N )
) 0  <  (
( F `  C
) `  i )
)
5046, 49nsyl 135 . 2  |-  ( ( C  e.  O  /\  -.  1  e.  C
)  ->  -.  C  e.  E )
5150ex 450 1  |-  ( C  e.  O  ->  ( -.  1  e.  C  ->  -.  C  e.  E
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    \ cdif 3571    i^i cin 3573   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  ballotth  30599
  Copyright terms: Public domain W3C validator