| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfrc | Structured version Visualization version Unicode version | ||
| Description: Express the value of |
| Ref | Expression |
|---|---|
| ballotth.m |
|
| ballotth.n |
|
| ballotth.o |
|
| ballotth.p |
|
| ballotth.f |
|
| ballotth.e |
|
| ballotth.mgtn |
|
| ballotth.i |
|
| ballotth.s |
|
| ballotth.r |
|
| ballotlemg |
|
| Ref | Expression |
|---|---|
| ballotlemfrc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballotth.m |
. . . . . . . . 9
| |
| 2 | ballotth.n |
. . . . . . . . 9
| |
| 3 | ballotth.o |
. . . . . . . . 9
| |
| 4 | ballotth.p |
. . . . . . . . 9
| |
| 5 | ballotth.f |
. . . . . . . . 9
| |
| 6 | ballotth.e |
. . . . . . . . 9
| |
| 7 | ballotth.mgtn |
. . . . . . . . 9
| |
| 8 | ballotth.i |
. . . . . . . . 9
| |
| 9 | ballotth.s |
. . . . . . . . 9
| |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsf1o 30575 |
. . . . . . . 8
|
| 11 | 10 | simpld 475 |
. . . . . . 7
|
| 12 | f1of1 6136 |
. . . . . . 7
| |
| 13 | 11, 12 | syl 17 |
. . . . . 6
|
| 14 | 13 | adantr 481 |
. . . . 5
|
| 15 | 1, 2, 3, 4, 5, 6, 7, 8 | ballotlemiex 30563 |
. . . . . . . . . . 11
|
| 16 | 15 | simpld 475 |
. . . . . . . . . 10
|
| 17 | 16 | adantr 481 |
. . . . . . . . 9
|
| 18 | elfzuz3 12339 |
. . . . . . . . 9
| |
| 19 | 17, 18 | syl 17 |
. . . . . . . 8
|
| 20 | elfzuz3 12339 |
. . . . . . . . 9
| |
| 21 | 20 | adantl 482 |
. . . . . . . 8
|
| 22 | uztrn 11704 |
. . . . . . . 8
| |
| 23 | 19, 21, 22 | syl2anc 693 |
. . . . . . 7
|
| 24 | fzss2 12381 |
. . . . . . 7
| |
| 25 | 23, 24 | syl 17 |
. . . . . 6
|
| 26 | ssinss1 3841 |
. . . . . 6
| |
| 27 | 25, 26 | syl 17 |
. . . . 5
|
| 28 | f1ores 6151 |
. . . . 5
| |
| 29 | 14, 27, 28 | syl2anc 693 |
. . . 4
|
| 30 | ovex 6678 |
. . . . . 6
| |
| 31 | 30 | inex1 4799 |
. . . . 5
|
| 32 | 31 | f1oen 7976 |
. . . 4
|
| 33 | hasheni 13136 |
. . . 4
| |
| 34 | 29, 32, 33 | 3syl 18 |
. . 3
|
| 35 | 25 | ssdifssd 3748 |
. . . . 5
|
| 36 | f1ores 6151 |
. . . . 5
| |
| 37 | 14, 35, 36 | syl2anc 693 |
. . . 4
|
| 38 | difexg 4808 |
. . . . . 6
| |
| 39 | 30, 38 | ax-mp 5 |
. . . . 5
|
| 40 | 39 | f1oen 7976 |
. . . 4
|
| 41 | hasheni 13136 |
. . . 4
| |
| 42 | 37, 40, 41 | 3syl 18 |
. . 3
|
| 43 | 34, 42 | oveq12d 6668 |
. 2
|
| 44 | ballotth.r |
. . . . 5
| |
| 45 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 44 | ballotlemro 30584 |
. . . 4
|
| 46 | 45 | adantr 481 |
. . 3
|
| 47 | elfzelz 12342 |
. . . 4
| |
| 48 | 47 | adantl 482 |
. . 3
|
| 49 | 1, 2, 3, 4, 5, 46, 48 | ballotlemfval 30551 |
. 2
|
| 50 | fzfi 12771 |
. . . . 5
| |
| 51 | eldifi 3732 |
. . . . . . 7
| |
| 52 | 1, 2, 3 | ballotlemelo 30549 |
. . . . . . . 8
|
| 53 | 52 | simplbi 476 |
. . . . . . 7
|
| 54 | 51, 53 | syl 17 |
. . . . . 6
|
| 55 | 54 | adantr 481 |
. . . . 5
|
| 56 | ssfi 8180 |
. . . . 5
| |
| 57 | 50, 55, 56 | sylancr 695 |
. . . 4
|
| 58 | fzfid 12772 |
. . . 4
| |
| 59 | ballotlemg |
. . . . 5
| |
| 60 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 44, 59 | ballotlemgval 30585 |
. . . 4
|
| 61 | 57, 58, 60 | syl2anc 693 |
. . 3
|
| 62 | dff1o3 6143 |
. . . . . . . . 9
| |
| 63 | 62 | simprbi 480 |
. . . . . . . 8
|
| 64 | imain 5974 |
. . . . . . . 8
| |
| 65 | 11, 63, 64 | 3syl 18 |
. . . . . . 7
|
| 66 | 65 | adantr 481 |
. . . . . 6
|
| 67 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsima 30577 |
. . . . . . 7
|
| 68 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 44 | ballotlemscr 30580 |
. . . . . . . 8
|
| 69 | 68 | adantr 481 |
. . . . . . 7
|
| 70 | 67, 69 | ineq12d 3815 |
. . . . . 6
|
| 71 | 66, 70 | eqtrd 2656 |
. . . . 5
|
| 72 | 71 | fveq2d 6195 |
. . . 4
|
| 73 | imadif 5973 |
. . . . . . . 8
| |
| 74 | 11, 63, 73 | 3syl 18 |
. . . . . . 7
|
| 75 | 74 | adantr 481 |
. . . . . 6
|
| 76 | 67, 69 | difeq12d 3729 |
. . . . . 6
|
| 77 | 75, 76 | eqtrd 2656 |
. . . . 5
|
| 78 | 77 | fveq2d 6195 |
. . . 4
|
| 79 | 72, 78 | oveq12d 6668 |
. . 3
|
| 80 | 61, 79 | eqtr4d 2659 |
. 2
|
| 81 | 43, 49, 80 | 3eqtr4d 2666 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-hash 13118 |
| This theorem is referenced by: ballotlemfrci 30589 ballotlemfrceq 30590 |
| Copyright terms: Public domain | W3C validator |