Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfrc Structured version   Visualization version   Unicode version

Theorem ballotlemfrc 30588
Description: Express the value of  ( F `
 ( R `  C ) ) in terms of the newly defined  .^. (Contributed by Thierry Arnoux, 21-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|-> inf ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  c ) `
 k )  =  0 } ,  RR ,  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
ballotth.r  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
ballotlemg  |-  .^  =  ( u  e.  Fin ,  v  e.  Fin  |->  ( ( # `  (
v  i^i  u )
)  -  ( # `  ( v  \  u
) ) ) )
Assertion
Ref Expression
ballotlemfrc  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 ( R `  C ) ) `  J )  =  ( C  .^  ( (
( S `  C
) `  J ) ... ( I `  C
) ) ) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k    C, i, k    i, E, k    C, k    k, I, c    E, c    i, I, c    k, J    S, k, i, c    R, i   
v, u, C    u, I, v    u, J, v   
u, R, v    u, S, v    i, J
Allowed substitution hints:    C( x, c)    P( x, v, u, i, k, c)    R( x, k, c)    S( x)    E( x, v, u)    .^ ( x, v, u, i, k, c)    F( x, v, u)    I( x)    J( x, c)    M( x, v, u)    N( x, v, u)    O( x, v, u)

Proof of Theorem ballotlemfrc
StepHypRef Expression
1 ballotth.m . . . . . . . . 9  |-  M  e.  NN
2 ballotth.n . . . . . . . . 9  |-  N  e.  NN
3 ballotth.o . . . . . . . . 9  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
4 ballotth.p . . . . . . . . 9  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
5 ballotth.f . . . . . . . . 9  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
6 ballotth.e . . . . . . . . 9  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
7 ballotth.mgtn . . . . . . . . 9  |-  N  < 
M
8 ballotth.i . . . . . . . . 9  |-  I  =  ( c  e.  ( O  \  E ) 
|-> inf ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  c ) `
 k )  =  0 } ,  RR ,  <  ) )
9 ballotth.s . . . . . . . . 9  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsf1o 30575 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
( S `  C
) : ( 1 ... ( M  +  N ) ) -1-1-onto-> ( 1 ... ( M  +  N ) )  /\  `' ( S `  C )  =  ( S `  C ) ) )
1110simpld 475 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-onto-> ( 1 ... ( M  +  N )
) )
12 f1of1 6136 . . . . . . 7  |-  ( ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-onto-> ( 1 ... ( M  +  N )
)  ->  ( S `  C ) : ( 1 ... ( M  +  N ) )
-1-1-> ( 1 ... ( M  +  N )
) )
1311, 12syl 17 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-> ( 1 ... ( M  +  N ) ) )
1413adantr 481 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( S `  C ) : ( 1 ... ( M  +  N ) )
-1-1-> ( 1 ... ( M  +  N )
) )
151, 2, 3, 4, 5, 6, 7, 8ballotlemiex 30563 . . . . . . . . . . 11  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `  C ) `  (
I `  C )
)  =  0 ) )
1615simpld 475 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ( 1 ... ( M  +  N )
) )
1716adantr 481 . . . . . . . . 9  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  ( 1 ... ( M  +  N ) ) )
18 elfzuz3 12339 . . . . . . . . 9  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  ( M  +  N )  e.  ( ZZ>= `  ( I `  C ) ) )
1917, 18syl 17 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( M  +  N )  e.  (
ZZ>= `  ( I `  C ) ) )
20 elfzuz3 12339 . . . . . . . . 9  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  (
I `  C )  e.  ( ZZ>= `  J )
)
2120adantl 482 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  (
ZZ>= `  J ) )
22 uztrn 11704 . . . . . . . 8  |-  ( ( ( M  +  N
)  e.  ( ZZ>= `  ( I `  C
) )  /\  (
I `  C )  e.  ( ZZ>= `  J )
)  ->  ( M  +  N )  e.  (
ZZ>= `  J ) )
2319, 21, 22syl2anc 693 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( M  +  N )  e.  (
ZZ>= `  J ) )
24 fzss2 12381 . . . . . . 7  |-  ( ( M  +  N )  e.  ( ZZ>= `  J
)  ->  ( 1 ... J )  C_  ( 1 ... ( M  +  N )
) )
2523, 24syl 17 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( 1 ... J )  C_  (
1 ... ( M  +  N ) ) )
26 ssinss1 3841 . . . . . 6  |-  ( ( 1 ... J ) 
C_  ( 1 ... ( M  +  N
) )  ->  (
( 1 ... J
)  i^i  ( R `  C ) )  C_  ( 1 ... ( M  +  N )
) )
2725, 26syl 17 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( 1 ... J )  i^i  ( R `  C
) )  C_  (
1 ... ( M  +  N ) ) )
28 f1ores 6151 . . . . 5  |-  ( ( ( S `  C
) : ( 1 ... ( M  +  N ) ) -1-1-> ( 1 ... ( M  +  N ) )  /\  ( ( 1 ... J )  i^i  ( R `  C
) )  C_  (
1 ... ( M  +  N ) ) )  ->  ( ( S `
 C )  |`  ( ( 1 ... J )  i^i  ( R `  C )
) ) : ( ( 1 ... J
)  i^i  ( R `  C ) ) -1-1-onto-> ( ( S `  C )
" ( ( 1 ... J )  i^i  ( R `  C
) ) ) )
2914, 27, 28syl2anc 693 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C )  |`  ( ( 1 ... J )  i^i  ( R `  C )
) ) : ( ( 1 ... J
)  i^i  ( R `  C ) ) -1-1-onto-> ( ( S `  C )
" ( ( 1 ... J )  i^i  ( R `  C
) ) ) )
30 ovex 6678 . . . . . 6  |-  ( 1 ... J )  e. 
_V
3130inex1 4799 . . . . 5  |-  ( ( 1 ... J )  i^i  ( R `  C ) )  e. 
_V
3231f1oen 7976 . . . 4  |-  ( ( ( S `  C
)  |`  ( ( 1 ... J )  i^i  ( R `  C
) ) ) : ( ( 1 ... J )  i^i  ( R `  C )
)
-1-1-onto-> ( ( S `  C ) " (
( 1 ... J
)  i^i  ( R `  C ) ) )  ->  ( ( 1 ... J )  i^i  ( R `  C
) )  ~~  (
( S `  C
) " ( ( 1 ... J )  i^i  ( R `  C ) ) ) )
33 hasheni 13136 . . . 4  |-  ( ( ( 1 ... J
)  i^i  ( R `  C ) )  ~~  ( ( S `  C ) " (
( 1 ... J
)  i^i  ( R `  C ) ) )  ->  ( # `  (
( 1 ... J
)  i^i  ( R `  C ) ) )  =  ( # `  (
( S `  C
) " ( ( 1 ... J )  i^i  ( R `  C ) ) ) ) )
3429, 32, 333syl 18 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( # `  (
( 1 ... J
)  i^i  ( R `  C ) ) )  =  ( # `  (
( S `  C
) " ( ( 1 ... J )  i^i  ( R `  C ) ) ) ) )
3525ssdifssd 3748 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( 1 ... J )  \ 
( R `  C
) )  C_  (
1 ... ( M  +  N ) ) )
36 f1ores 6151 . . . . 5  |-  ( ( ( S `  C
) : ( 1 ... ( M  +  N ) ) -1-1-> ( 1 ... ( M  +  N ) )  /\  ( ( 1 ... J )  \ 
( R `  C
) )  C_  (
1 ... ( M  +  N ) ) )  ->  ( ( S `
 C )  |`  ( ( 1 ... J )  \  ( R `  C )
) ) : ( ( 1 ... J
)  \  ( R `  C ) ) -1-1-onto-> ( ( S `  C )
" ( ( 1 ... J )  \ 
( R `  C
) ) ) )
3714, 35, 36syl2anc 693 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C )  |`  ( ( 1 ... J )  \  ( R `  C )
) ) : ( ( 1 ... J
)  \  ( R `  C ) ) -1-1-onto-> ( ( S `  C )
" ( ( 1 ... J )  \ 
( R `  C
) ) ) )
38 difexg 4808 . . . . . 6  |-  ( ( 1 ... J )  e.  _V  ->  (
( 1 ... J
)  \  ( R `  C ) )  e. 
_V )
3930, 38ax-mp 5 . . . . 5  |-  ( ( 1 ... J ) 
\  ( R `  C ) )  e. 
_V
4039f1oen 7976 . . . 4  |-  ( ( ( S `  C
)  |`  ( ( 1 ... J )  \ 
( R `  C
) ) ) : ( ( 1 ... J )  \  ( R `  C )
)
-1-1-onto-> ( ( S `  C ) " (
( 1 ... J
)  \  ( R `  C ) ) )  ->  ( ( 1 ... J )  \ 
( R `  C
) )  ~~  (
( S `  C
) " ( ( 1 ... J ) 
\  ( R `  C ) ) ) )
41 hasheni 13136 . . . 4  |-  ( ( ( 1 ... J
)  \  ( R `  C ) )  ~~  ( ( S `  C ) " (
( 1 ... J
)  \  ( R `  C ) ) )  ->  ( # `  (
( 1 ... J
)  \  ( R `  C ) ) )  =  ( # `  (
( S `  C
) " ( ( 1 ... J ) 
\  ( R `  C ) ) ) ) )
4237, 40, 413syl 18 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( # `  (
( 1 ... J
)  \  ( R `  C ) ) )  =  ( # `  (
( S `  C
) " ( ( 1 ... J ) 
\  ( R `  C ) ) ) ) )
4334, 42oveq12d 6668 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( # `  ( ( 1 ... J )  i^i  ( R `  C )
) )  -  ( # `
 ( ( 1 ... J )  \ 
( R `  C
) ) ) )  =  ( ( # `  ( ( S `  C ) " (
( 1 ... J
)  i^i  ( R `  C ) ) ) )  -  ( # `  ( ( S `  C ) " (
( 1 ... J
)  \  ( R `  C ) ) ) ) ) )
44 ballotth.r . . . . 5  |-  R  =  ( c  e.  ( O  \  E ) 
|->  ( ( S `  c ) " c
) )
451, 2, 3, 4, 5, 6, 7, 8, 9, 44ballotlemro 30584 . . . 4  |-  ( C  e.  ( O  \  E )  ->  ( R `  C )  e.  O )
4645adantr 481 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( R `  C )  e.  O
)
47 elfzelz 12342 . . . 4  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  J  e.  ZZ )
4847adantl 482 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ZZ )
491, 2, 3, 4, 5, 46, 48ballotlemfval 30551 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 ( R `  C ) ) `  J )  =  ( ( # `  (
( 1 ... J
)  i^i  ( R `  C ) ) )  -  ( # `  (
( 1 ... J
)  \  ( R `  C ) ) ) ) )
50 fzfi 12771 . . . . 5  |-  ( 1 ... ( M  +  N ) )  e. 
Fin
51 eldifi 3732 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  C  e.  O )
521, 2, 3ballotlemelo 30549 . . . . . . . 8  |-  ( C  e.  O  <->  ( C  C_  ( 1 ... ( M  +  N )
)  /\  ( # `  C
)  =  M ) )
5352simplbi 476 . . . . . . 7  |-  ( C  e.  O  ->  C  C_  ( 1 ... ( M  +  N )
) )
5451, 53syl 17 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  C  C_  ( 1 ... ( M  +  N )
) )
5554adantr 481 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  C  C_  (
1 ... ( M  +  N ) ) )
56 ssfi 8180 . . . . 5  |-  ( ( ( 1 ... ( M  +  N )
)  e.  Fin  /\  C  C_  ( 1 ... ( M  +  N
) ) )  ->  C  e.  Fin )
5750, 55, 56sylancr 695 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  C  e.  Fin )
58 fzfid 12772 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  e.  Fin )
59 ballotlemg . . . . 5  |-  .^  =  ( u  e.  Fin ,  v  e.  Fin  |->  ( ( # `  (
v  i^i  u )
)  -  ( # `  ( v  \  u
) ) ) )
601, 2, 3, 4, 5, 6, 7, 8, 9, 44, 59ballotlemgval 30585 . . . 4  |-  ( ( C  e.  Fin  /\  ( ( ( S `
 C ) `  J ) ... (
I `  C )
)  e.  Fin )  ->  ( C  .^  (
( ( S `  C ) `  J
) ... ( I `  C ) ) )  =  ( ( # `  ( ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  i^i  C
) )  -  ( # `
 ( ( ( ( S `  C
) `  J ) ... ( I `  C
) )  \  C
) ) ) )
6157, 58, 60syl2anc 693 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( C  .^  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) )  =  ( ( # `  (
( ( ( S `
 C ) `  J ) ... (
I `  C )
)  i^i  C )
)  -  ( # `  ( ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  \  C
) ) ) )
62 dff1o3 6143 . . . . . . . . 9  |-  ( ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-onto-> ( 1 ... ( M  +  N )
)  <->  ( ( S `
 C ) : ( 1 ... ( M  +  N )
) -onto-> ( 1 ... ( M  +  N
) )  /\  Fun  `' ( S `  C
) ) )
6362simprbi 480 . . . . . . . 8  |-  ( ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-onto-> ( 1 ... ( M  +  N )
)  ->  Fun  `' ( S `  C ) )
64 imain 5974 . . . . . . . 8  |-  ( Fun  `' ( S `  C )  ->  (
( S `  C
) " ( ( 1 ... J )  i^i  ( R `  C ) ) )  =  ( ( ( S `  C )
" ( 1 ... J ) )  i^i  ( ( S `  C ) " ( R `  C )
) ) )
6511, 63, 643syl 18 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  (
( S `  C
) " ( ( 1 ... J )  i^i  ( R `  C ) ) )  =  ( ( ( S `  C )
" ( 1 ... J ) )  i^i  ( ( S `  C ) " ( R `  C )
) ) )
6665adantr 481 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( ( 1 ... J )  i^i  ( R `  C )
) )  =  ( ( ( S `  C ) " (
1 ... J ) )  i^i  ( ( S `
 C ) "
( R `  C
) ) ) )
671, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsima 30577 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( 1 ... J
) )  =  ( ( ( S `  C ) `  J
) ... ( I `  C ) ) )
681, 2, 3, 4, 5, 6, 7, 8, 9, 44ballotlemscr 30580 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
( S `  C
) " ( R `
 C ) )  =  C )
6968adantr 481 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( R `  C
) )  =  C )
7067, 69ineq12d 3815 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C )
" ( 1 ... J ) )  i^i  ( ( S `  C ) " ( R `  C )
) )  =  ( ( ( ( S `
 C ) `  J ) ... (
I `  C )
)  i^i  C )
)
7166, 70eqtrd 2656 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( ( 1 ... J )  i^i  ( R `  C )
) )  =  ( ( ( ( S `
 C ) `  J ) ... (
I `  C )
)  i^i  C )
)
7271fveq2d 6195 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( # `  (
( S `  C
) " ( ( 1 ... J )  i^i  ( R `  C ) ) ) )  =  ( # `  ( ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  i^i  C
) ) )
73 imadif 5973 . . . . . . . 8  |-  ( Fun  `' ( S `  C )  ->  (
( S `  C
) " ( ( 1 ... J ) 
\  ( R `  C ) ) )  =  ( ( ( S `  C )
" ( 1 ... J ) )  \ 
( ( S `  C ) " ( R `  C )
) ) )
7411, 63, 733syl 18 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  (
( S `  C
) " ( ( 1 ... J ) 
\  ( R `  C ) ) )  =  ( ( ( S `  C )
" ( 1 ... J ) )  \ 
( ( S `  C ) " ( R `  C )
) ) )
7574adantr 481 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( ( 1 ... J )  \  ( R `  C )
) )  =  ( ( ( S `  C ) " (
1 ... J ) ) 
\  ( ( S `
 C ) "
( R `  C
) ) ) )
7667, 69difeq12d 3729 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C )
" ( 1 ... J ) )  \ 
( ( S `  C ) " ( R `  C )
) )  =  ( ( ( ( S `
 C ) `  J ) ... (
I `  C )
)  \  C )
)
7775, 76eqtrd 2656 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( ( 1 ... J )  \  ( R `  C )
) )  =  ( ( ( ( S `
 C ) `  J ) ... (
I `  C )
)  \  C )
)
7877fveq2d 6195 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( # `  (
( S `  C
) " ( ( 1 ... J ) 
\  ( R `  C ) ) ) )  =  ( # `  ( ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  \  C
) ) )
7972, 78oveq12d 6668 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( # `  ( ( S `  C ) " (
( 1 ... J
)  i^i  ( R `  C ) ) ) )  -  ( # `  ( ( S `  C ) " (
( 1 ... J
)  \  ( R `  C ) ) ) ) )  =  ( ( # `  (
( ( ( S `
 C ) `  J ) ... (
I `  C )
)  i^i  C )
)  -  ( # `  ( ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  \  C
) ) ) )
8061, 79eqtr4d 2659 . 2  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( C  .^  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) )  =  ( ( # `  (
( S `  C
) " ( ( 1 ... J )  i^i  ( R `  C ) ) ) )  -  ( # `  ( ( S `  C ) " (
( 1 ... J
)  \  ( R `  C ) ) ) ) ) )
8143, 49, 803eqtr4d 2666 1  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( F `
 ( R `  C ) ) `  J )  =  ( C  .^  ( (
( S `  C
) `  J ) ... ( I `  C
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   ifcif 4086   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113    |` cres 5116   "cima 5117   Fun wfun 5882   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ~~ cen 7952   Fincfn 7955  infcinf 8347   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-hash 13118
This theorem is referenced by:  ballotlemfrci  30589  ballotlemfrceq  30590
  Copyright terms: Public domain W3C validator