MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcp1nk Structured version   Visualization version   Unicode version

Theorem bcp1nk 13104
Description: The proportion of one binomial coefficient to another with  N and  K increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
bcp1nk  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  ( K  +  1 ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  ( K  +  1 ) ) ) )

Proof of Theorem bcp1nk
StepHypRef Expression
1 elfzel1 12341 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  0  e.  ZZ )
2 elfzel2 12340 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  N  e.  ZZ )
3 elfzelz 12342 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
4 1zzd 11408 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  1  e.  ZZ )
5 fzaddel 12375 . . . . . 6  |-  ( ( ( 0  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( K  e.  ( 0 ... N )  <-> 
( K  +  1 )  e.  ( ( 0  +  1 ) ... ( N  + 
1 ) ) ) )
61, 2, 3, 4, 5syl22anc 1327 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  ( K  e.  ( 0 ... N )  <->  ( K  +  1 )  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) )
76ibi 256 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( K  +  1 )  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )
8 1e0p1 11552 . . . . 5  |-  1  =  ( 0  +  1 )
98oveq1i 6660 . . . 4  |-  ( 1 ... ( N  + 
1 ) )  =  ( ( 0  +  1 ) ... ( N  +  1 ) )
107, 9syl6eleqr 2712 . . 3  |-  ( K  e.  ( 0 ... N )  ->  ( K  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
11 bcm1k 13102 . . 3  |-  ( ( K  +  1 )  e.  ( 1 ... ( N  +  1 ) )  ->  (
( N  +  1 )  _C  ( K  +  1 ) )  =  ( ( ( N  +  1 )  _C  ( ( K  +  1 )  - 
1 ) )  x.  ( ( ( N  +  1 )  -  ( ( K  + 
1 )  -  1 ) )  /  ( K  +  1 ) ) ) )
1210, 11syl 17 . 2  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  ( K  +  1 ) )  =  ( ( ( N  +  1 )  _C  ( ( K  +  1 )  - 
1 ) )  x.  ( ( ( N  +  1 )  -  ( ( K  + 
1 )  -  1 ) )  /  ( K  +  1 ) ) ) )
133zcnd 11483 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  K  e.  CC )
14 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
15 pncan 10287 . . . . . . 7  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( ( K  + 
1 )  -  1 )  =  K )
1613, 14, 15sylancl 694 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  (
( K  +  1 )  -  1 )  =  K )
1716oveq2d 6666 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  ( ( K  +  1 )  -  1 ) )  =  ( ( N  +  1 )  _C  K ) )
18 bcp1n 13103 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
1917, 18eqtrd 2656 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  ( ( K  +  1 )  -  1 ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
2016oveq2d 6666 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  ( ( K  +  1 )  -  1 ) )  =  ( ( N  +  1 )  -  K ) )
2120oveq1d 6665 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  -  (
( K  +  1 )  -  1 ) )  /  ( K  +  1 ) )  =  ( ( ( N  +  1 )  -  K )  / 
( K  +  1 ) ) )
2219, 21oveq12d 6668 . . 3  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  _C  (
( K  +  1 )  -  1 ) )  x.  ( ( ( N  +  1 )  -  ( ( K  +  1 )  -  1 ) )  /  ( K  + 
1 ) ) )  =  ( ( ( N  _C  K )  x.  ( ( N  +  1 )  / 
( ( N  + 
1 )  -  K
) ) )  x.  ( ( ( N  +  1 )  -  K )  /  ( K  +  1 ) ) ) )
23 bcrpcl 13095 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  e.  RR+ )
2423rpcnd 11874 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  e.  CC )
252peano2zd 11485 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  ( N  +  1 )  e.  ZZ )
2625zred 11482 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  ( N  +  1 )  e.  RR )
273zred 11482 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  K  e.  RR )
282zred 11482 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  N  e.  RR )
29 elfzle2 12345 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  K  <_  N )
3028ltp1d 10954 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  N  <  ( N  +  1 ) )
3127, 28, 26, 29, 30lelttrd 10195 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  K  <  ( N  +  1 ) )
32 znnsub 11423 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  ->  ( K  < 
( N  +  1 )  <->  ( ( N  +  1 )  -  K )  e.  NN ) )
333, 25, 32syl2anc 693 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  ( K  <  ( N  + 
1 )  <->  ( ( N  +  1 )  -  K )  e.  NN ) )
3431, 33mpbid 222 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  K )  e.  NN )
3526, 34nndivred 11069 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  /  ( ( N  +  1 )  -  K ) )  e.  RR )
3635recnd 10068 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  /  ( ( N  +  1 )  -  K ) )  e.  CC )
3734nnred 11035 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  K )  e.  RR )
38 elfznn0 12433 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
39 nn0p1nn 11332 . . . . . . . 8  |-  ( K  e.  NN0  ->  ( K  +  1 )  e.  NN )
4038, 39syl 17 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  ( K  +  1 )  e.  NN )
4137, 40nndivred 11069 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  ( K  +  1 ) )  e.  RR )
4241recnd 10068 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  ( K  +  1 ) )  e.  CC )
4324, 36, 42mulassd 10063 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  _C  K )  x.  (
( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  x.  ( ( ( N  +  1 )  -  K )  /  ( K  + 
1 ) ) )  =  ( ( N  _C  K )  x.  ( ( ( N  +  1 )  / 
( ( N  + 
1 )  -  K
) )  x.  (
( ( N  + 
1 )  -  K
)  /  ( K  +  1 ) ) ) ) )
4425zcnd 11483 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( N  +  1 )  e.  CC )
4534nncnd 11036 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  K )  e.  CC )
4640nncnd 11036 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( K  +  1 )  e.  CC )
4734nnne0d 11065 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  -  K )  =/=  0 )
4840nnne0d 11065 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( K  +  1 )  =/=  0 )
4944, 45, 46, 47, 48dmdcan2d 10831 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) )  x.  ( ( ( N  +  1 )  -  K )  /  ( K  + 
1 ) ) )  =  ( ( N  +  1 )  / 
( K  +  1 ) ) )
5049oveq2d 6666 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  (
( N  _C  K
)  x.  ( ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) )  x.  ( ( ( N  +  1 )  -  K )  / 
( K  +  1 ) ) ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  ( K  +  1 ) ) ) )
5143, 50eqtrd 2656 . . 3  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  _C  K )  x.  (
( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  x.  ( ( ( N  +  1 )  -  K )  /  ( K  + 
1 ) ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  ( K  +  1 ) ) ) )
5222, 51eqtrd 2656 . 2  |-  ( K  e.  ( 0 ... N )  ->  (
( ( N  + 
1 )  _C  (
( K  +  1 )  -  1 ) )  x.  ( ( ( N  +  1 )  -  ( ( K  +  1 )  -  1 ) )  /  ( K  + 
1 ) ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  ( K  +  1 ) ) ) )
5312, 52eqtrd 2656 1  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  ( K  +  1 ) )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  ( K  +  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ...cfz 12326    _C cbc 13089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-fac 13061  df-bc 13090
This theorem is referenced by:  sylow1lem1  18013
  Copyright terms: Public domain W3C validator