| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bcm1k | Structured version Visualization version Unicode version | ||
| Description: The proportion of one
binomial coefficient to another with |
| Ref | Expression |
|---|---|
| bcm1k |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz2 12346 |
. . . . . . . . 9
| |
| 2 | nnuz 11723 |
. . . . . . . . 9
| |
| 3 | 1, 2 | syl6eleqr 2712 |
. . . . . . . 8
|
| 4 | 3 | nnnn0d 11351 |
. . . . . . 7
|
| 5 | faccl 13070 |
. . . . . . 7
| |
| 6 | 4, 5 | syl 17 |
. . . . . 6
|
| 7 | 6 | nncnd 11036 |
. . . . 5
|
| 8 | fznn0sub 12373 |
. . . . . . 7
| |
| 9 | nn0p1nn 11332 |
. . . . . . 7
| |
| 10 | 8, 9 | syl 17 |
. . . . . 6
|
| 11 | 10 | nncnd 11036 |
. . . . 5
|
| 12 | 10 | nnnn0d 11351 |
. . . . . . . 8
|
| 13 | faccl 13070 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 17 |
. . . . . . 7
|
| 15 | elfznn 12370 |
. . . . . . . 8
| |
| 16 | nnm1nn0 11334 |
. . . . . . . 8
| |
| 17 | faccl 13070 |
. . . . . . . 8
| |
| 18 | 15, 16, 17 | 3syl 18 |
. . . . . . 7
|
| 19 | 14, 18 | nnmulcld 11068 |
. . . . . 6
|
| 20 | nncn 11028 |
. . . . . . 7
| |
| 21 | nnne0 11053 |
. . . . . . 7
| |
| 22 | 20, 21 | jca 554 |
. . . . . 6
|
| 23 | 19, 22 | syl 17 |
. . . . 5
|
| 24 | 15 | nncnd 11036 |
. . . . . 6
|
| 25 | 15 | nnne0d 11065 |
. . . . . 6
|
| 26 | 24, 25 | jca 554 |
. . . . 5
|
| 27 | divmuldiv 10725 |
. . . . 5
| |
| 28 | 7, 11, 23, 26, 27 | syl22anc 1327 |
. . . 4
|
| 29 | elfzel2 12340 |
. . . . . . . . . 10
| |
| 30 | 29 | zcnd 11483 |
. . . . . . . . 9
|
| 31 | 1cnd 10056 |
. . . . . . . . 9
| |
| 32 | 30, 24, 31 | subsubd 10420 |
. . . . . . . 8
|
| 33 | 32 | fveq2d 6195 |
. . . . . . 7
|
| 34 | 33 | oveq1d 6665 |
. . . . . 6
|
| 35 | 34 | oveq2d 6666 |
. . . . 5
|
| 36 | 32 | oveq1d 6665 |
. . . . 5
|
| 37 | 35, 36 | oveq12d 6668 |
. . . 4
|
| 38 | facp1 13065 |
. . . . . . . . 9
| |
| 39 | 8, 38 | syl 17 |
. . . . . . . 8
|
| 40 | 39 | eqcomd 2628 |
. . . . . . 7
|
| 41 | facnn2 13069 |
. . . . . . . 8
| |
| 42 | 15, 41 | syl 17 |
. . . . . . 7
|
| 43 | 40, 42 | oveq12d 6668 |
. . . . . 6
|
| 44 | faccl 13070 |
. . . . . . . . 9
| |
| 45 | 8, 44 | syl 17 |
. . . . . . . 8
|
| 46 | 45 | nncnd 11036 |
. . . . . . 7
|
| 47 | 15 | nnnn0d 11351 |
. . . . . . . . 9
|
| 48 | faccl 13070 |
. . . . . . . . 9
| |
| 49 | 47, 48 | syl 17 |
. . . . . . . 8
|
| 50 | 49 | nncnd 11036 |
. . . . . . 7
|
| 51 | 46, 50, 11 | mul32d 10246 |
. . . . . 6
|
| 52 | 14 | nncnd 11036 |
. . . . . . 7
|
| 53 | 18 | nncnd 11036 |
. . . . . . 7
|
| 54 | 52, 53, 24 | mulassd 10063 |
. . . . . 6
|
| 55 | 43, 51, 54 | 3eqtr4d 2666 |
. . . . 5
|
| 56 | 55 | oveq2d 6666 |
. . . 4
|
| 57 | 28, 37, 56 | 3eqtr4d 2666 |
. . 3
|
| 58 | 7, 11 | mulcomd 10061 |
. . . 4
|
| 59 | 45, 49 | nnmulcld 11068 |
. . . . . 6
|
| 60 | 59 | nncnd 11036 |
. . . . 5
|
| 61 | 60, 11 | mulcomd 10061 |
. . . 4
|
| 62 | 58, 61 | oveq12d 6668 |
. . 3
|
| 63 | 59 | nnne0d 11065 |
. . . 4
|
| 64 | 10 | nnne0d 11065 |
. . . 4
|
| 65 | 7, 60, 11, 63, 64 | divcan5d 10827 |
. . 3
|
| 66 | 57, 62, 65 | 3eqtrrd 2661 |
. 2
|
| 67 | 0p1e1 11132 |
. . . . . 6
| |
| 68 | 67 | oveq1i 6660 |
. . . . 5
|
| 69 | 0z 11388 |
. . . . . 6
| |
| 70 | fzp1ss 12392 |
. . . . . 6
| |
| 71 | 69, 70 | ax-mp 5 |
. . . . 5
|
| 72 | 68, 71 | eqsstr3i 3636 |
. . . 4
|
| 73 | 72 | sseli 3599 |
. . 3
|
| 74 | bcval2 13092 |
. . 3
| |
| 75 | 73, 74 | syl 17 |
. 2
|
| 76 | ax-1cn 9994 |
. . . . . . . 8
| |
| 77 | npcan 10290 |
. . . . . . . 8
| |
| 78 | 30, 76, 77 | sylancl 694 |
. . . . . . 7
|
| 79 | peano2zm 11420 |
. . . . . . . 8
| |
| 80 | uzid 11702 |
. . . . . . . 8
| |
| 81 | peano2uz 11741 |
. . . . . . . 8
| |
| 82 | 29, 79, 80, 81 | 4syl 19 |
. . . . . . 7
|
| 83 | 78, 82 | eqeltrrd 2702 |
. . . . . 6
|
| 84 | fzss2 12381 |
. . . . . 6
| |
| 85 | 83, 84 | syl 17 |
. . . . 5
|
| 86 | elfzmlbm 12449 |
. . . . 5
| |
| 87 | 85, 86 | sseldd 3604 |
. . . 4
|
| 88 | bcval2 13092 |
. . . 4
| |
| 89 | 87, 88 | syl 17 |
. . 3
|
| 90 | 89 | oveq1d 6665 |
. 2
|
| 91 | 66, 75, 90 | 3eqtr4d 2666 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-seq 12802 df-fac 13061 df-bc 13090 |
| This theorem is referenced by: bcp1nk 13104 bcpasc 13108 bpolydiflem 14785 basellem5 24811 |
| Copyright terms: Public domain | W3C validator |