MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly2 Structured version   Visualization version   Unicode version

Theorem bpoly2 14788
Description: The Bernoulli polynomials at two. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly2  |-  ( X  e.  CC  ->  (
2 BernPoly  X )  =  ( ( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) )

Proof of Theorem bpoly2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 2nn0 11309 . . 3  |-  2  e.  NN0
2 bpolyval 14780 . . 3  |-  ( ( 2  e.  NN0  /\  X  e.  CC )  ->  ( 2 BernPoly  X )  =  ( ( X ^ 2 )  -  sum_ k  e.  ( 0 ... ( 2  -  1 ) ) ( ( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) ) ) )
31, 2mpan 706 . 2  |-  ( X  e.  CC  ->  (
2 BernPoly  X )  =  ( ( X ^ 2 )  -  sum_ k  e.  ( 0 ... (
2  -  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) ) ) )
4 2m1e1 11135 . . . . . . 7  |-  ( 2  -  1 )  =  1
5 0p1e1 11132 . . . . . . 7  |-  ( 0  +  1 )  =  1
64, 5eqtr4i 2647 . . . . . 6  |-  ( 2  -  1 )  =  ( 0  +  1 )
76oveq2i 6661 . . . . 5  |-  ( 0 ... ( 2  -  1 ) )  =  ( 0 ... (
0  +  1 ) )
87sumeq1i 14428 . . . 4  |-  sum_ k  e.  ( 0 ... (
2  -  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )
9 0nn0 11307 . . . . . . . . 9  |-  0  e.  NN0
10 nn0uz 11722 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
119, 10eleqtri 2699 . . . . . . . 8  |-  0  e.  ( ZZ>= `  0 )
1211a1i 11 . . . . . . 7  |-  ( X  e.  CC  ->  0  e.  ( ZZ>= `  0 )
)
13 0z 11388 . . . . . . . . . . 11  |-  0  e.  ZZ
14 fzpr 12396 . . . . . . . . . . 11  |-  ( 0  e.  ZZ  ->  (
0 ... ( 0  +  1 ) )  =  { 0 ,  ( 0  +  1 ) } )
1513, 14ax-mp 5 . . . . . . . . . 10  |-  ( 0 ... ( 0  +  1 ) )  =  { 0 ,  ( 0  +  1 ) }
1615eleq2i 2693 . . . . . . . . 9  |-  ( k  e.  ( 0 ... ( 0  +  1 ) )  <->  k  e.  { 0 ,  ( 0  +  1 ) } )
17 vex 3203 . . . . . . . . . 10  |-  k  e. 
_V
1817elpr 4198 . . . . . . . . 9  |-  ( k  e.  { 0 ,  ( 0  +  1 ) }  <->  ( k  =  0  \/  k  =  ( 0  +  1 ) ) )
1916, 18bitri 264 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( 0  +  1 ) )  <->  ( k  =  0  \/  k  =  ( 0  +  1 ) ) )
20 oveq2 6658 . . . . . . . . . . . . 13  |-  ( k  =  0  ->  (
2  _C  k )  =  ( 2  _C  0 ) )
21 bcn0 13097 . . . . . . . . . . . . . 14  |-  ( 2  e.  NN0  ->  ( 2  _C  0 )  =  1 )
221, 21ax-mp 5 . . . . . . . . . . . . 13  |-  ( 2  _C  0 )  =  1
2320, 22syl6eq 2672 . . . . . . . . . . . 12  |-  ( k  =  0  ->  (
2  _C  k )  =  1 )
24 oveq1 6657 . . . . . . . . . . . . 13  |-  ( k  =  0  ->  (
k BernPoly  X )  =  ( 0 BernPoly  X ) )
25 oveq2 6658 . . . . . . . . . . . . . . 15  |-  ( k  =  0  ->  (
2  -  k )  =  ( 2  -  0 ) )
2625oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( k  =  0  ->  (
( 2  -  k
)  +  1 )  =  ( ( 2  -  0 )  +  1 ) )
27 2cn 11091 . . . . . . . . . . . . . . . . 17  |-  2  e.  CC
2827subid1i 10353 . . . . . . . . . . . . . . . 16  |-  ( 2  -  0 )  =  2
2928oveq1i 6660 . . . . . . . . . . . . . . 15  |-  ( ( 2  -  0 )  +  1 )  =  ( 2  +  1 )
30 df-3 11080 . . . . . . . . . . . . . . 15  |-  3  =  ( 2  +  1 )
3129, 30eqtr4i 2647 . . . . . . . . . . . . . 14  |-  ( ( 2  -  0 )  +  1 )  =  3
3226, 31syl6eq 2672 . . . . . . . . . . . . 13  |-  ( k  =  0  ->  (
( 2  -  k
)  +  1 )  =  3 )
3324, 32oveq12d 6668 . . . . . . . . . . . 12  |-  ( k  =  0  ->  (
( k BernPoly  X )  /  ( ( 2  -  k )  +  1 ) )  =  ( ( 0 BernPoly  X
)  /  3 ) )
3423, 33oveq12d 6668 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  3
) ) )
35 bpoly0 14781 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
0 BernPoly  X )  =  1 )
3635oveq1d 6665 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 0 BernPoly  X )  /  3 )  =  ( 1  /  3
) )
3736oveq2d 6666 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  3
) )  =  ( 1  x.  ( 1  /  3 ) ) )
38 3cn 11095 . . . . . . . . . . . . . 14  |-  3  e.  CC
39 3ne0 11115 . . . . . . . . . . . . . 14  |-  3  =/=  0
4038, 39reccli 10755 . . . . . . . . . . . . 13  |-  ( 1  /  3 )  e.  CC
4140mulid2i 10043 . . . . . . . . . . . 12  |-  ( 1  x.  ( 1  / 
3 ) )  =  ( 1  /  3
)
4237, 41syl6eq 2672 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  3
) )  =  ( 1  /  3 ) )
4334, 42sylan9eqr 2678 . . . . . . . . . 10  |-  ( ( X  e.  CC  /\  k  =  0 )  ->  ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( 1  /  3 ) )
4443, 40syl6eqel 2709 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  k  =  0 )  ->  ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  e.  CC )
455eqeq2i 2634 . . . . . . . . . . . 12  |-  ( k  =  ( 0  +  1 )  <->  k  = 
1 )
46 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
2  _C  k )  =  ( 2  _C  1 ) )
47 bcn1 13100 . . . . . . . . . . . . . . 15  |-  ( 2  e.  NN0  ->  ( 2  _C  1 )  =  2 )
481, 47ax-mp 5 . . . . . . . . . . . . . 14  |-  ( 2  _C  1 )  =  2
4946, 48syl6eq 2672 . . . . . . . . . . . . 13  |-  ( k  =  1  ->  (
2  _C  k )  =  2 )
50 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
k BernPoly  X )  =  ( 1 BernPoly  X ) )
51 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( k  =  1  ->  (
2  -  k )  =  ( 2  -  1 ) )
5251oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( k  =  1  ->  (
( 2  -  k
)  +  1 )  =  ( ( 2  -  1 )  +  1 ) )
53 ax-1cn 9994 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
54 npcan 10290 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  CC  /\  1  e.  CC )  ->  ( ( 2  -  1 )  +  1 )  =  2 )
5527, 53, 54mp2an 708 . . . . . . . . . . . . . . 15  |-  ( ( 2  -  1 )  +  1 )  =  2
5652, 55syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
( 2  -  k
)  +  1 )  =  2 )
5750, 56oveq12d 6668 . . . . . . . . . . . . 13  |-  ( k  =  1  ->  (
( k BernPoly  X )  /  ( ( 2  -  k )  +  1 ) )  =  ( ( 1 BernPoly  X
)  /  2 ) )
5849, 57oveq12d 6668 . . . . . . . . . . . 12  |-  ( k  =  1  ->  (
( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  =  ( 2  x.  ( ( 1 BernPoly  X )  /  2
) ) )
5945, 58sylbi 207 . . . . . . . . . . 11  |-  ( k  =  ( 0  +  1 )  ->  (
( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  =  ( 2  x.  ( ( 1 BernPoly  X )  /  2
) ) )
60 bpoly1 14782 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
1 BernPoly  X )  =  ( X  -  ( 1  /  2 ) ) )
6160oveq1d 6665 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 1 BernPoly  X )  /  2 )  =  ( ( X  -  ( 1  /  2
) )  /  2
) )
6261oveq2d 6666 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
2  x.  ( ( 1 BernPoly  X )  /  2
) )  =  ( 2  x.  ( ( X  -  ( 1  /  2 ) )  /  2 ) ) )
63 halfcn 11247 . . . . . . . . . . . . . 14  |-  ( 1  /  2 )  e.  CC
64 subcl 10280 . . . . . . . . . . . . . 14  |-  ( ( X  e.  CC  /\  ( 1  /  2
)  e.  CC )  ->  ( X  -  ( 1  /  2
) )  e.  CC )
6563, 64mpan2 707 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  ( X  -  ( 1  /  2 ) )  e.  CC )
66 2ne0 11113 . . . . . . . . . . . . . 14  |-  2  =/=  0
67 divcan2 10693 . . . . . . . . . . . . . 14  |-  ( ( ( X  -  (
1  /  2 ) )  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
2  x.  ( ( X  -  ( 1  /  2 ) )  /  2 ) )  =  ( X  -  ( 1  /  2
) ) )
6827, 66, 67mp3an23 1416 . . . . . . . . . . . . 13  |-  ( ( X  -  ( 1  /  2 ) )  e.  CC  ->  (
2  x.  ( ( X  -  ( 1  /  2 ) )  /  2 ) )  =  ( X  -  ( 1  /  2
) ) )
6965, 68syl 17 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
2  x.  ( ( X  -  ( 1  /  2 ) )  /  2 ) )  =  ( X  -  ( 1  /  2
) ) )
7062, 69eqtrd 2656 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
2  x.  ( ( 1 BernPoly  X )  /  2
) )  =  ( X  -  ( 1  /  2 ) ) )
7159, 70sylan9eqr 2678 . . . . . . . . . 10  |-  ( ( X  e.  CC  /\  k  =  ( 0  +  1 ) )  ->  ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( X  -  ( 1  / 
2 ) ) )
7265adantr 481 . . . . . . . . . 10  |-  ( ( X  e.  CC  /\  k  =  ( 0  +  1 ) )  ->  ( X  -  ( 1  /  2
) )  e.  CC )
7371, 72eqeltrd 2701 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  k  =  ( 0  +  1 ) )  ->  ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  e.  CC )
7444, 73jaodan 826 . . . . . . . 8  |-  ( ( X  e.  CC  /\  ( k  =  0  \/  k  =  ( 0  +  1 ) ) )  ->  (
( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  e.  CC )
7519, 74sylan2b 492 . . . . . . 7  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 0  +  1 ) ) )  ->  ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  e.  CC )
7612, 75, 59fsump1 14487 . . . . . 6  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... 0 ) ( ( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  +  ( 2  x.  ( ( 1 BernPoly  X )  /  2
) ) ) )
7742, 40syl6eqel 2709 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  3
) )  e.  CC )
7834fsum1 14476 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  ( 1  x.  (
( 0 BernPoly  X )  /  3 ) )  e.  CC )  ->  sum_ k  e.  ( 0 ... 0 ) ( ( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  3
) ) )
7913, 77, 78sylancr 695 . . . . . . . 8  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 0
) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  3
) ) )
8079, 42eqtrd 2656 . . . . . . 7  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 0
) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( 1  /  3 ) )
8180, 70oveq12d 6668 . . . . . 6  |-  ( X  e.  CC  ->  ( sum_ k  e.  ( 0 ... 0 ) ( ( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  +  ( 2  x.  ( ( 1 BernPoly  X )  /  2
) ) )  =  ( ( 1  / 
3 )  +  ( X  -  ( 1  /  2 ) ) ) )
8276, 81eqtrd 2656 . . . . 5  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( ( 1  /  3 )  +  ( X  -  ( 1  /  2
) ) ) )
83 addsub12 10294 . . . . . . 7  |-  ( ( ( 1  /  3
)  e.  CC  /\  X  e.  CC  /\  (
1  /  2 )  e.  CC )  -> 
( ( 1  / 
3 )  +  ( X  -  ( 1  /  2 ) ) )  =  ( X  +  ( ( 1  /  3 )  -  ( 1  /  2
) ) ) )
8440, 63, 83mp3an13 1415 . . . . . 6  |-  ( X  e.  CC  ->  (
( 1  /  3
)  +  ( X  -  ( 1  / 
2 ) ) )  =  ( X  +  ( ( 1  / 
3 )  -  (
1  /  2 ) ) ) )
8563, 40negsubdi2i 10367 . . . . . . . 8  |-  -u (
( 1  /  2
)  -  ( 1  /  3 ) )  =  ( ( 1  /  3 )  -  ( 1  /  2
) )
86 halfthird 11685 . . . . . . . . 9  |-  ( ( 1  /  2 )  -  ( 1  / 
3 ) )  =  ( 1  /  6
)
8786negeqi 10274 . . . . . . . 8  |-  -u (
( 1  /  2
)  -  ( 1  /  3 ) )  =  -u ( 1  / 
6 )
8885, 87eqtr3i 2646 . . . . . . 7  |-  ( ( 1  /  3 )  -  ( 1  / 
2 ) )  = 
-u ( 1  / 
6 )
8988oveq2i 6661 . . . . . 6  |-  ( X  +  ( ( 1  /  3 )  -  ( 1  /  2
) ) )  =  ( X  +  -u ( 1  /  6
) )
9084, 89syl6eq 2672 . . . . 5  |-  ( X  e.  CC  ->  (
( 1  /  3
)  +  ( X  -  ( 1  / 
2 ) ) )  =  ( X  +  -u ( 1  /  6
) ) )
91 6cn 11102 . . . . . . 7  |-  6  e.  CC
92 6re 11101 . . . . . . . 8  |-  6  e.  RR
93 6pos 11119 . . . . . . . 8  |-  0  <  6
9492, 93gt0ne0ii 10564 . . . . . . 7  |-  6  =/=  0
9591, 94reccli 10755 . . . . . 6  |-  ( 1  /  6 )  e.  CC
96 negsub 10329 . . . . . 6  |-  ( ( X  e.  CC  /\  ( 1  /  6
)  e.  CC )  ->  ( X  +  -u ( 1  /  6
) )  =  ( X  -  ( 1  /  6 ) ) )
9795, 96mpan2 707 . . . . 5  |-  ( X  e.  CC  ->  ( X  +  -u ( 1  /  6 ) )  =  ( X  -  ( 1  /  6
) ) )
9882, 90, 973eqtrd 2660 . . . 4  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( X  -  ( 1  / 
6 ) ) )
998, 98syl5eq 2668 . . 3  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
2  -  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( X  -  ( 1  / 
6 ) ) )
10099oveq2d 6666 . 2  |-  ( X  e.  CC  ->  (
( X ^ 2 )  -  sum_ k  e.  ( 0 ... (
2  -  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) ) )  =  ( ( X ^ 2 )  -  ( X  -  ( 1  / 
6 ) ) ) )
101 sqcl 12925 . . 3  |-  ( X  e.  CC  ->  ( X ^ 2 )  e.  CC )
102 subsub 10311 . . . 4  |-  ( ( ( X ^ 2 )  e.  CC  /\  X  e.  CC  /\  (
1  /  6 )  e.  CC )  -> 
( ( X ^
2 )  -  ( X  -  ( 1  /  6 ) ) )  =  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) )
10395, 102mp3an3 1413 . . 3  |-  ( ( ( X ^ 2 )  e.  CC  /\  X  e.  CC )  ->  ( ( X ^
2 )  -  ( X  -  ( 1  /  6 ) ) )  =  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) )
104101, 103mpancom 703 . 2  |-  ( X  e.  CC  ->  (
( X ^ 2 )  -  ( X  -  ( 1  / 
6 ) ) )  =  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) )
1053, 100, 1043eqtrd 2660 1  |-  ( X  e.  CC  ->  (
2 BernPoly  X )  =  ( ( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {cpr 4179   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   2c2 11070   3c3 11071   6c6 11074   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   ^cexp 12860    _C cbc 13089   sum_csu 14416   BernPoly cbp 14777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-bpoly 14778
This theorem is referenced by:  bpoly3  14789  bpoly4  14790
  Copyright terms: Public domain W3C validator