Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnconn1lem7 Structured version   Visualization version   Unicode version

Theorem btwnconn1lem7 32200
Description: Lemma for btwnconn1 32208. Under our assumptions,  C and  d are distinct. (Contributed by Scott Fenton, 8-Oct-2013.)
Assertion
Ref Expression
btwnconn1lem7  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  (
( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. ) ) )  ->  C  =/=  d )

Proof of Theorem btwnconn1lem7
StepHypRef Expression
1 simp1l3 1156 . . . . 5  |-  ( ( ( ( A  =/= 
B  /\  B  =/=  C  /\  C  =/=  c
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  ->  C  =/=  c )
21adantr 481 . . . 4  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. ) )  ->  C  =/=  c )
3 simp2rr 1131 . . . . 5  |-  ( ( ( ( A  =/= 
B  /\  B  =/=  C  /\  C  =/=  c
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  ->  <. C ,  d >.Cgr <. C ,  D >. )
43adantr 481 . . . 4  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. ) )  ->  <. C , 
d >.Cgr <. C ,  D >. )
5 simp2lr 1129 . . . . 5  |-  ( ( ( ( A  =/= 
B  /\  B  =/=  C  /\  C  =/=  c
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  ->  <. D ,  c >.Cgr <. C ,  D >. )
65adantr 481 . . . 4  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. ) )  ->  <. D , 
c >.Cgr <. C ,  D >. )
72, 4, 63jca 1242 . . 3  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. ) )  ->  ( C  =/=  c  /\  <. C , 
d >.Cgr <. C ,  D >.  /\  <. D ,  c
>.Cgr <. C ,  D >. ) )
8 simp11 1091 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  ->  N  e.  NN )
9 simp21 1094 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  ->  C  e.  ( EE `  N ) )
10 simp22 1095 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  ->  D  e.  ( EE `  N ) )
11 simp23 1096 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
c  e.  ( EE
`  N ) )
12 simp31 1097 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
d  e.  ( EE
`  N ) )
13 simpr1 1067 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N
) ) )  /\  ( C  =/=  c  /\  <. C ,  d
>.Cgr <. C ,  D >.  /\  <. D ,  c
>.Cgr <. C ,  D >. ) )  ->  C  =/=  c )
14 opeq2 4403 . . . . . . . . . . . 12  |-  ( C  =  d  ->  <. C ,  C >.  =  <. C , 
d >. )
1514breq1d 4663 . . . . . . . . . . 11  |-  ( C  =  d  ->  ( <. C ,  C >.Cgr <. C ,  D >.  <->  <. C ,  d >.Cgr <. C ,  D >. ) )
16153anbi2d 1404 . . . . . . . . . 10  |-  ( C  =  d  ->  (
( C  =/=  c  /\  <. C ,  C >.Cgr
<. C ,  D >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  <-> 
( C  =/=  c  /\  <. C ,  d
>.Cgr <. C ,  D >.  /\  <. D ,  c
>.Cgr <. C ,  D >. ) ) )
1716biimparc 504 . . . . . . . . 9  |-  ( ( ( C  =/=  c  /\  <. C ,  d
>.Cgr <. C ,  D >.  /\  <. D ,  c
>.Cgr <. C ,  D >. )  /\  C  =  d )  ->  ( C  =/=  c  /\  <. C ,  C >.Cgr <. C ,  D >.  /\  <. D , 
c >.Cgr <. C ,  D >. ) )
18 simp2 1062 . . . . . . . . . . . . 13  |-  ( ( C  =/=  c  /\  <. C ,  C >.Cgr <. C ,  D >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  ->  <. C ,  C >.Cgr
<. C ,  D >. )
19 simp1 1061 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  N  e.  NN )
20 simp2l 1087 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
21 simp2r 1088 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
22 cgrid2 32110 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. C ,  C >.Cgr
<. C ,  D >.  ->  C  =  D )
)
2319, 20, 20, 21, 22syl13anc 1328 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  ( <. C ,  C >.Cgr <. C ,  D >.  ->  C  =  D )
)
2418, 23syl5 34 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  (
( C  =/=  c  /\  <. C ,  C >.Cgr
<. C ,  D >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  ->  C  =  D ) )
2524imp 445 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N
) ) )  /\  ( C  =/=  c  /\  <. C ,  C >.Cgr
<. C ,  D >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. ) )  ->  C  =  D )
26 opeq1 4402 . . . . . . . . . . . . . . . 16  |-  ( C  =  D  ->  <. C , 
c >.  =  <. D , 
c >. )
27 opeq2 4403 . . . . . . . . . . . . . . . 16  |-  ( C  =  D  ->  <. C ,  C >.  =  <. C ,  D >. )
2826, 27breq12d 4666 . . . . . . . . . . . . . . 15  |-  ( C  =  D  ->  ( <. C ,  c >.Cgr <. C ,  C >.  <->  <. D ,  c >.Cgr <. C ,  D >. ) )
2928biimparc 504 . . . . . . . . . . . . . 14  |-  ( (
<. D ,  c >.Cgr <. C ,  D >.  /\  C  =  D )  ->  <. C ,  c
>.Cgr <. C ,  C >. )
30 simp3l 1089 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  c  e.  ( EE `  N
) )
31 axcgrid 25796 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  c  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( <. C ,  c
>.Cgr <. C ,  C >.  ->  C  =  c ) )
3219, 20, 30, 20, 31syl13anc 1328 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  ( <. C ,  c >.Cgr <. C ,  C >.  ->  C  =  c )
)
3329, 32syl5 34 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  (
( <. D ,  c
>.Cgr <. C ,  D >.  /\  C  =  D )  ->  C  =  c ) )
3433expdimp 453 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N
) ) )  /\  <. D ,  c >.Cgr <. C ,  D >. )  ->  ( C  =  D  ->  C  =  c ) )
35343ad2antr3 1228 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N
) ) )  /\  ( C  =/=  c  /\  <. C ,  C >.Cgr
<. C ,  D >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. ) )  ->  ( C  =  D  ->  C  =  c ) )
3625, 35mpd 15 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N
) ) )  /\  ( C  =/=  c  /\  <. C ,  C >.Cgr
<. C ,  D >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. ) )  ->  C  =  c )
3736ex 450 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  (
( C  =/=  c  /\  <. C ,  C >.Cgr
<. C ,  D >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  ->  C  =  c ) )
3817, 37syl5 34 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  (
( ( C  =/=  c  /\  <. C , 
d >.Cgr <. C ,  D >.  /\  <. D ,  c
>.Cgr <. C ,  D >. )  /\  C  =  d )  ->  C  =  c ) )
3938expdimp 453 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N
) ) )  /\  ( C  =/=  c  /\  <. C ,  d
>.Cgr <. C ,  D >.  /\  <. D ,  c
>.Cgr <. C ,  D >. ) )  ->  ( C  =  d  ->  C  =  c ) )
4039necon3d 2815 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N
) ) )  /\  ( C  =/=  c  /\  <. C ,  d
>.Cgr <. C ,  D >.  /\  <. D ,  c
>.Cgr <. C ,  D >. ) )  ->  ( C  =/=  c  ->  C  =/=  d ) )
4113, 40mpd 15 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N
) ) )  /\  ( C  =/=  c  /\  <. C ,  d
>.Cgr <. C ,  D >.  /\  <. D ,  c
>.Cgr <. C ,  D >. ) )  ->  C  =/=  d )
4241ex 450 . . . 4  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( c  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  (
( C  =/=  c  /\  <. C ,  d
>.Cgr <. C ,  D >.  /\  <. D ,  c
>.Cgr <. C ,  D >. )  ->  C  =/=  d ) )
438, 9, 10, 11, 12, 42syl122anc 1335 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( ( C  =/=  c  /\  <. C , 
d >.Cgr <. C ,  D >.  /\  <. D ,  c
>.Cgr <. C ,  D >. )  ->  C  =/=  d ) )
447, 43syl5 34 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. ) )  ->  C  =/=  d ) )
4544imp 445 1  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  (
( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. ) ) )  ->  C  =/=  d )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   <.cop 4183   class class class wbr 4653   ` cfv 5888   NNcn 11020   EEcee 25768    Btwn cbtwn 25769  Cgrccgr 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ee 25771  df-cgr 25773
This theorem is referenced by:  btwnconn1lem8  32201  btwnconn1lem12  32205
  Copyright terms: Public domain W3C validator