Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnconn1lem8 Structured version   Visualization version   Unicode version

Theorem btwnconn1lem8 32201
Description: Lemma for btwnconn1 32208. Now, we introduce the last three points used in the construction:  P,  Q, and  R will turn out to be equal further down, and will provide us with the key to the final statement. We begin by establishing congruence of  R P and  E d. (Contributed by Scott Fenton, 8-Oct-2013.)
Assertion
Ref Expression
btwnconn1lem8  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. R ,  P >.Cgr
<. E ,  d >.
)

Proof of Theorem btwnconn1lem8
StepHypRef Expression
1 simpr2l 1120 . . . 4  |-  ( ( ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. )  /\  ( ( C 
Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr
<. C ,  d >.
)  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) )  ->  C  Btwn  <. d ,  R >. )
21ad2antll 765 . . 3  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  C  Btwn  <. d ,  R >. )
3 simpr1r 1119 . . . . . 6  |-  ( ( ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. )  /\  ( ( C 
Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr
<. C ,  d >.
)  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) )  ->  <. C ,  P >.Cgr <. C ,  d
>. )
43ad2antll 765 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. C ,  P >.Cgr
<. C ,  d >.
)
5 simp11 1091 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  N  e.  NN )
6 simp2l1 1160 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
7 simp31 1097 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  P  e.  ( EE `  N
) )
8 simp2r1 1163 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  d  e.  ( EE `  N
) )
9 cgrcomlr 32105 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  d  e.  ( EE `  N ) ) )  ->  ( <. C ,  P >.Cgr <. C ,  d
>. 
<-> 
<. P ,  C >.Cgr <.
d ,  C >. ) )
105, 6, 7, 6, 8, 9syl122anc 1335 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( <. C ,  P >.Cgr <. C ,  d >.  <->  <. P ,  C >.Cgr <. d ,  C >. ) )
11 cgrcom 32097 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( <. P ,  C >.Cgr <.
d ,  C >.  <->  <. d ,  C >.Cgr <. P ,  C >. ) )
125, 7, 6, 8, 6, 11syl122anc 1335 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( <. P ,  C >.Cgr <.
d ,  C >.  <->  <. d ,  C >.Cgr <. P ,  C >. ) )
1310, 12bitrd 268 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( <. C ,  P >.Cgr <. C ,  d >.  <->  <. d ,  C >.Cgr <. P ,  C >. ) )
1413adantr 481 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( <. C ,  P >.Cgr <. C ,  d
>. 
<-> 
<. d ,  C >.Cgr <. P ,  C >. ) )
154, 14mpbid 222 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. d ,  C >.Cgr
<. P ,  C >. )
16 simp33 1099 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  R  e.  ( EE `  N
) )
17 simp2r3 1165 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N
) )
18 simp2l3 1162 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  c  e.  ( EE `  N
) )
19 simpr1l 1118 . . . . . . . 8  |-  ( ( ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. )  /\  ( ( C 
Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr
<. C ,  d >.
)  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) )  ->  C  Btwn  <. c ,  P >. )
2019ad2antll 765 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  C  Btwn  <. c ,  P >. )
215, 6, 18, 7, 20btwncomand 32122 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  C  Btwn  <. P , 
c >. )
22 simprll 802 . . . . . . 7  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) )  ->  E  Btwn  <. C ,  c
>. )
2322adantl 482 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  E  Btwn  <. C , 
c >. )
24 btwnintr 32126 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) ) )  ->  ( ( C 
Btwn  <. P ,  c
>.  /\  E  Btwn  <. C , 
c >. )  ->  C  Btwn  <. P ,  E >. ) )
255, 7, 6, 17, 18, 24syl122anc 1335 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  (
( C  Btwn  <. P , 
c >.  /\  E  Btwn  <. C ,  c >. )  ->  C  Btwn  <. P ,  E >. ) )
2625adantr 481 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( ( C 
Btwn  <. P ,  c
>.  /\  E  Btwn  <. C , 
c >. )  ->  C  Btwn  <. P ,  E >. ) )
2721, 23, 26mp2and 715 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  C  Btwn  <. P ,  E >. )
28 simpr2r 1121 . . . . . 6  |-  ( ( ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. )  /\  ( ( C 
Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr
<. C ,  d >.
)  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) )  ->  <. C ,  R >.Cgr <. C ,  E >. )
2928ad2antll 765 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. C ,  R >.Cgr
<. C ,  E >. )
305, 8, 6, 16, 7, 6, 17, 2, 27, 15, 29cgrextendand 32116 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. d ,  R >.Cgr
<. P ,  E >. )
31 brcgr3 32153 . . . . . 6  |-  ( ( N  e.  NN  /\  ( d  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  C  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  ->  ( <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  <->  ( <. d ,  C >.Cgr <. P ,  C >.  /\  <. d ,  R >.Cgr <. P ,  E >.  /\  <. C ,  R >.Cgr
<. C ,  E >. ) ) )
325, 8, 6, 16, 7, 6, 17, 31syl133anc 1349 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  <->  ( <. d ,  C >.Cgr <. P ,  C >.  /\  <. d ,  R >.Cgr <. P ,  E >.  /\  <. C ,  R >.Cgr
<. C ,  E >. ) ) )
3332adantr 481 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  <->  ( <. d ,  C >.Cgr <. P ,  C >.  /\  <. d ,  R >.Cgr <. P ,  E >.  /\  <. C ,  R >.Cgr
<. C ,  E >. ) ) )
3415, 30, 29, 33mpbir3and 1245 . . 3  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.
)
355, 8, 7cgrrflx2d 32091 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  <. d ,  P >.Cgr <. P ,  d
>. )
3635adantr 481 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. d ,  P >.Cgr
<. P ,  d >.
)
3736, 4jca 554 . . 3  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( <. d ,  P >.Cgr <. P ,  d
>.  /\  <. C ,  P >.Cgr
<. C ,  d >.
) )
382, 34, 373jca 1242 . 2  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( C  Btwn  <.
d ,  R >.  /\ 
<. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr <. P ,  d >.  /\ 
<. C ,  P >.Cgr <. C ,  d >. ) ) )
39 simp1 1061 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )
40 simp2l 1087 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  c  e.  ( EE `  N ) ) )
41 simp2r 1088 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )
4239, 40, 413jca 1242 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  (
( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) ) )
43 simpl 473 . . . . 5  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) )  -> 
( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) )
44 simprl 794 . . . . 5  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) )  -> 
( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. ) )
4543, 44jca 554 . . . 4  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) )  -> 
( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. ) ) )
46 btwnconn1lem7 32200 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  (
( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( E  Btwn  <. C , 
c >.  /\  E  Btwn  <. D ,  d >. ) ) )  ->  C  =/=  d )
4742, 45, 46syl2an 494 . . 3  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  C  =/=  d
)
4847necomd 2849 . 2  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  d  =/=  C
)
49 brofs2 32184 . . . . . 6  |-  ( ( ( N  e.  NN  /\  d  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( R  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  d  e.  ( EE `  N ) ) )  ->  ( <. <. d ,  C >. ,  <. R ,  P >. >. 
OuterFiveSeg  <. <. P ,  C >. ,  <. E ,  d
>. >. 
<->  ( C  Btwn  <. d ,  R >.  /\  <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr <. P ,  d >.  /\ 
<. C ,  P >.Cgr <. C ,  d >. ) ) ) )
5049anbi1d 741 . . . . 5  |-  ( ( ( N  e.  NN  /\  d  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( R  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  d  e.  ( EE `  N ) ) )  ->  (
( <. <. d ,  C >. ,  <. R ,  P >. >. 
OuterFiveSeg  <. <. P ,  C >. ,  <. E ,  d
>. >.  /\  d  =/=  C )  <->  ( ( C 
Btwn  <. d ,  R >.  /\  <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr
<. P ,  d >.  /\  <. C ,  P >.Cgr
<. C ,  d >.
) )  /\  d  =/=  C ) ) )
51 5segofs 32113 . . . . 5  |-  ( ( ( N  e.  NN  /\  d  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( R  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  d  e.  ( EE `  N ) ) )  ->  (
( <. <. d ,  C >. ,  <. R ,  P >. >. 
OuterFiveSeg  <. <. P ,  C >. ,  <. E ,  d
>. >.  /\  d  =/=  C )  ->  <. R ,  P >.Cgr <. E ,  d
>. ) )
5250, 51sylbird 250 . . . 4  |-  ( ( ( N  e.  NN  /\  d  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( R  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  d  e.  ( EE `  N ) ) )  ->  (
( ( C  Btwn  <.
d ,  R >.  /\ 
<. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr <. P ,  d >.  /\ 
<. C ,  P >.Cgr <. C ,  d >. ) )  /\  d  =/= 
C )  ->  <. R ,  P >.Cgr <. E ,  d
>. ) )
535, 8, 6, 16, 7, 7, 6, 17, 8, 52syl333anc 1358 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  R  e.  ( EE `  N ) ) )  ->  (
( ( C  Btwn  <.
d ,  R >.  /\ 
<. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr <. P ,  d >.  /\ 
<. C ,  P >.Cgr <. C ,  d >. ) )  /\  d  =/= 
C )  ->  <. R ,  P >.Cgr <. E ,  d
>. ) )
5453adantr 481 . 2  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  ( ( ( C  Btwn  <. d ,  R >.  /\  <. d ,  <. C ,  R >. >.Cgr3 <. P ,  <. C ,  E >. >.  /\  ( <. d ,  P >.Cgr <. P ,  d >.  /\ 
<. C ,  P >.Cgr <. C ,  d >. ) )  /\  d  =/= 
C )  ->  <. R ,  P >.Cgr <. E ,  d
>. ) )
5538, 48, 54mp2and 715 1  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( E  Btwn  <. C ,  c >.  /\  E  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  P >.  /\  <. C ,  P >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  R >.  /\  <. C ,  R >.Cgr
<. C ,  E >. )  /\  ( R  Btwn  <. P ,  Q >.  /\ 
<. R ,  Q >.Cgr <. R ,  P >. ) ) ) ) )  ->  <. R ,  P >.Cgr
<. E ,  d >.
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794   <.cop 4183   class class class wbr 4653   ` cfv 5888   NNcn 11020   EEcee 25768    Btwn cbtwn 25769  Cgrccgr 25770    OuterFiveSeg cofs 32089  Cgr3ccgr3 32143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ee 25771  df-btwn 25772  df-cgr 25773  df-ofs 32090  df-ifs 32147  df-cgr3 32148
This theorem is referenced by:  btwnconn1lem9  32202  btwnconn1lem10  32203  btwnconn1lem11  32204
  Copyright terms: Public domain W3C validator