Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwndiff Structured version   Visualization version   Unicode version

Theorem btwndiff 32134
Description: There is always a  c distinct from  B such that  B lies between  A and  c. Theorem 3.14 of [Schwabhauser] p. 32. (Contributed by Scott Fenton, 24-Sep-2013.)
Assertion
Ref Expression
btwndiff  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  E. c  e.  ( EE `  N
) ( B  Btwn  <. A ,  c >.  /\  B  =/=  c ) )
Distinct variable groups:    A, c    B, c    N, c

Proof of Theorem btwndiff
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axlowdim1 25839 . . 3  |-  ( N  e.  NN  ->  E. u  e.  ( EE `  N
) E. v  e.  ( EE `  N
) u  =/=  v
)
213ad2ant1 1082 . 2  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  E. u  e.  ( EE `  N
) E. v  e.  ( EE `  N
) u  =/=  v
)
3 simp11 1091 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N ) )  /\  u  =/=  v )  ->  N  e.  NN )
4 simp12 1092 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N ) )  /\  u  =/=  v )  ->  A  e.  ( EE `  N ) )
5 simp13 1093 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N ) )  /\  u  =/=  v )  ->  B  e.  ( EE `  N ) )
6 simp2l 1087 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N ) )  /\  u  =/=  v )  ->  u  e.  ( EE `  N ) )
7 simp2r 1088 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N ) )  /\  u  =/=  v )  -> 
v  e.  ( EE
`  N ) )
8 axsegcon 25807 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N ) ) )  ->  E. c  e.  ( EE `  N ) ( B  Btwn  <. A , 
c >.  /\  <. B , 
c >.Cgr <. u ,  v
>. ) )
93, 4, 5, 6, 7, 8syl122anc 1335 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N ) )  /\  u  =/=  v )  ->  E. c  e.  ( EE `  N ) ( B  Btwn  <. A , 
c >.  /\  <. B , 
c >.Cgr <. u ,  v
>. ) )
10 simpl11 1136 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N
) )  /\  u  =/=  v )  /\  c  e.  ( EE `  N
) )  ->  N  e.  NN )
11 simpl13 1138 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N
) )  /\  u  =/=  v )  /\  c  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
12 simpr 477 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N
) )  /\  u  =/=  v )  /\  c  e.  ( EE `  N
) )  ->  c  e.  ( EE `  N
) )
13 simpl2l 1114 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N
) )  /\  u  =/=  v )  /\  c  e.  ( EE `  N
) )  ->  u  e.  ( EE `  N
) )
14 simpl2r 1115 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N
) )  /\  u  =/=  v )  /\  c  e.  ( EE `  N
) )  ->  v  e.  ( EE `  N
) )
15 cgrdegen 32111 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N ) ) )  ->  ( <. B , 
c >.Cgr <. u ,  v
>.  ->  ( B  =  c  <->  u  =  v
) ) )
1610, 11, 12, 13, 14, 15syl122anc 1335 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N
) )  /\  u  =/=  v )  /\  c  e.  ( EE `  N
) )  ->  ( <. B ,  c >.Cgr <. u ,  v >.  ->  ( B  =  c  <-> 
u  =  v ) ) )
17 biimp 205 . . . . . . . . . . . 12  |-  ( ( B  =  c  <->  u  =  v )  ->  ( B  =  c  ->  u  =  v ) )
1817necon3d 2815 . . . . . . . . . . 11  |-  ( ( B  =  c  <->  u  =  v )  ->  (
u  =/=  v  ->  B  =/=  c ) )
1918com12 32 . . . . . . . . . 10  |-  ( u  =/=  v  ->  (
( B  =  c  <-> 
u  =  v )  ->  B  =/=  c
) )
20193ad2ant3 1084 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N ) )  /\  u  =/=  v )  -> 
( ( B  =  c  <->  u  =  v
)  ->  B  =/=  c ) )
2120adantr 481 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N
) )  /\  u  =/=  v )  /\  c  e.  ( EE `  N
) )  ->  (
( B  =  c  <-> 
u  =  v )  ->  B  =/=  c
) )
2216, 21syld 47 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N
) )  /\  u  =/=  v )  /\  c  e.  ( EE `  N
) )  ->  ( <. B ,  c >.Cgr <. u ,  v >.  ->  B  =/=  c ) )
2322anim2d 589 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N
) )  /\  u  =/=  v )  /\  c  e.  ( EE `  N
) )  ->  (
( B  Btwn  <. A , 
c >.  /\  <. B , 
c >.Cgr <. u ,  v
>. )  ->  ( B 
Btwn  <. A ,  c
>.  /\  B  =/=  c
) ) )
2423reximdva 3017 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N ) )  /\  u  =/=  v )  -> 
( E. c  e.  ( EE `  N
) ( B  Btwn  <. A ,  c >.  /\ 
<. B ,  c >.Cgr <. u ,  v >.
)  ->  E. c  e.  ( EE `  N
) ( B  Btwn  <. A ,  c >.  /\  B  =/=  c ) ) )
259, 24mpd 15 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N ) )  /\  u  =/=  v )  ->  E. c  e.  ( EE `  N ) ( B  Btwn  <. A , 
c >.  /\  B  =/=  c ) )
26253exp 1264 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  (
( u  e.  ( EE `  N )  /\  v  e.  ( EE `  N ) )  ->  ( u  =/=  v  ->  E. c  e.  ( EE `  N
) ( B  Btwn  <. A ,  c >.  /\  B  =/=  c ) ) ) )
2726rexlimdvv 3037 . 2  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  ( E. u  e.  ( EE `  N ) E. v  e.  ( EE
`  N ) u  =/=  v  ->  E. c  e.  ( EE `  N
) ( B  Btwn  <. A ,  c >.  /\  B  =/=  c ) ) )
282, 27mpd 15 1  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  E. c  e.  ( EE `  N
) ( B  Btwn  <. A ,  c >.  /\  B  =/=  c ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   <.cop 4183   class class class wbr 4653   ` cfv 5888   NNcn 11020   EEcee 25768    Btwn cbtwn 25769  Cgrccgr 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ee 25771  df-btwn 25772  df-cgr 25773
This theorem is referenced by:  ifscgr  32151  cgrxfr  32162  btwnconn3  32210  broutsideof3  32233
  Copyright terms: Public domain W3C validator