MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvgr Structured version   Visualization version   Unicode version

Theorem caurcvgr 14404
Description: A Cauchy sequence of real numbers converges to its limit supremum. The third hypothesis specifies that  F is a Cauchy sequence. (Contributed by Mario Carneiro, 7-May-2016.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
caurcvgr.1  |-  ( ph  ->  A  C_  RR )
caurcvgr.2  |-  ( ph  ->  F : A --> RR )
caurcvgr.3  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
caurcvgr.4  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
Assertion
Ref Expression
caurcvgr  |-  ( ph  ->  F  ~~> r  ( limsup `  F ) )
Distinct variable groups:    j, k, x, A    j, F, k, x    ph, j, k, x

Proof of Theorem caurcvgr
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 caurcvgr.1 . . . . 5  |-  ( ph  ->  A  C_  RR )
2 caurcvgr.2 . . . . 5  |-  ( ph  ->  F : A --> RR )
3 caurcvgr.3 . . . . 5  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
4 caurcvgr.4 . . . . 5  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
5 1rp 11836 . . . . . 6  |-  1  e.  RR+
65a1i 11 . . . . 5  |-  ( ph  ->  1  e.  RR+ )
71, 2, 3, 4, 6caucvgrlem 14403 . . . 4  |-  ( ph  ->  E. j  e.  A  ( ( limsup `  F
)  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  1 ) ) ) )
8 simpl 473 . . . . 5  |-  ( ( ( limsup `  F )  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  1 ) ) )  ->  ( limsup `  F )  e.  RR )
98rexlimivw 3029 . . . 4  |-  ( E. j  e.  A  ( ( limsup `  F )  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  1 ) ) )  ->  ( limsup `  F )  e.  RR )
107, 9syl 17 . . 3  |-  ( ph  ->  ( limsup `  F )  e.  RR )
1110recnd 10068 . 2  |-  ( ph  ->  ( limsup `  F )  e.  CC )
121adantr 481 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  A  C_  RR )
132adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  F : A
--> RR )
143adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  sup ( A ,  RR* ,  <  )  = +oo )
154adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
) )
16 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR+ )
17 3re 11094 . . . . . . . . 9  |-  3  e.  RR
18 3pos 11114 . . . . . . . . 9  |-  0  <  3
1917, 18elrpii 11835 . . . . . . . 8  |-  3  e.  RR+
20 rpdivcl 11856 . . . . . . . 8  |-  ( ( y  e.  RR+  /\  3  e.  RR+ )  ->  (
y  /  3 )  e.  RR+ )
2116, 19, 20sylancl 694 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( y  /  3 )  e.  RR+ )
2212, 13, 14, 15, 21caucvgrlem 14403 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  A  ( ( limsup `
 F )  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) ) ) )
23 simpr 477 . . . . . . 7  |-  ( ( ( limsup `  F )  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) ) )  ->  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) ) )
2423reximi 3011 . . . . . 6  |-  ( E. j  e.  A  ( ( limsup `  F )  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) ) )  ->  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) ) )
2522, 24syl 17 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) ) )
26 ssrexv 3667 . . . . 5  |-  ( A 
C_  RR  ->  ( E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  (
y  /  3 ) ) )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) ) ) )
2712, 25, 26sylc 65 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) ) )
28 rpcn 11841 . . . . . . . . 9  |-  ( y  e.  RR+  ->  y  e.  CC )
2928adantl 482 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  CC )
30 3cn 11095 . . . . . . . . 9  |-  3  e.  CC
3130a1i 11 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  3  e.  CC )
32 3ne0 11115 . . . . . . . . 9  |-  3  =/=  0
3332a1i 11 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  3  =/=  0 )
3429, 31, 33divcan2d 10803 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( 3  x.  ( y  / 
3 ) )  =  y )
3534breq2d 4665 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( ( abs `  ( ( F `
 k )  -  ( limsup `  F )
) )  <  (
3  x.  ( y  /  3 ) )  <-> 
( abs `  (
( F `  k
)  -  ( limsup `  F ) ) )  <  y ) )
3635imbi2d 330 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  (
y  /  3 ) ) )  <->  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  y ) ) )
3736rexralbidv 3058 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) )  <->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
y ) ) )
3827, 37mpbid 222 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  y ) )
3938ralrimiva 2966 . 2  |-  ( ph  ->  A. y  e.  RR+  E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
y ) )
40 ax-resscn 9993 . . . 4  |-  RR  C_  CC
41 fss 6056 . . . 4  |-  ( ( F : A --> RR  /\  RR  C_  CC )  ->  F : A --> CC )
422, 40, 41sylancl 694 . . 3  |-  ( ph  ->  F : A --> CC )
43 eqidd 2623 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  k )  =  ( F `  k ) )
4442, 1, 43rlim 14226 . 2  |-  ( ph  ->  ( F  ~~> r  (
limsup `  F )  <->  ( ( limsup `
 F )  e.  CC  /\  A. y  e.  RR+  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  y ) ) ) )
4511, 39, 44mpbir2and 957 1  |-  ( ph  ->  F  ~~> r  ( limsup `  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   3c3 11071   RR+crp 11832   abscabs 13974   limsupclsp 14201    ~~> r crli 14216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-rlim 14220
This theorem is referenced by:  caucvgrlem2  14405  caurcvg  14407
  Copyright terms: Public domain W3C validator