MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom3 Structured version   Visualization version   Unicode version

Theorem cnfcom3 8601
Description: Any infinite ordinal  B is equinumerous to a power of  om. (We are being careful here to show explicit bijections rather than simple equinumerosity because we want a uniform construction for cnfcom3c 8603.) (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 4-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s  |-  S  =  dom  ( om CNF  A
)
cnfcom.a  |-  ( ph  ->  A  e.  On )
cnfcom.b  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
cnfcom.f  |-  F  =  ( `' ( om CNF 
A ) `  B
)
cnfcom.g  |-  G  = OrdIso
(  _E  ,  ( F supp  (/) ) )
cnfcom.h  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
cnfcom.t  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
cnfcom.m  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
cnfcom.k  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
cnfcom.w  |-  W  =  ( G `  U. dom  G )
cnfcom3.1  |-  ( ph  ->  om  C_  B )
cnfcom.x  |-  X  =  ( u  e.  ( F `  W ) ,  v  e.  ( om  ^o  W ) 
|->  ( ( ( F `
 W )  .o  v )  +o  u
) )
cnfcom.y  |-  Y  =  ( u  e.  ( F `  W ) ,  v  e.  ( om  ^o  W ) 
|->  ( ( ( om 
^o  W )  .o  u )  +o  v
) )
cnfcom.n  |-  N  =  ( ( X  o.  `' Y )  o.  ( T `  dom  G ) )
Assertion
Ref Expression
cnfcom3  |-  ( ph  ->  N : B -1-1-onto-> ( om 
^o  W ) )
Distinct variable groups:    x, k,
z, A    u, k,
v, x, z    x, M    ph, u, v    f,
k, u, v, x, z, F    u, K, v    u, T, v, z   
u, W, v, x   
f, G, k, u, v, x, z    f, H, u, v, x    S, k, z    ph, k, x, z
Allowed substitution hints:    ph( f)    A( v, u, f)    B( x, z, v, u, f, k)    S( x, v, u, f)    T( x, f, k)    H( z, k)    K( x, z, f, k)    M( z, v, u, f, k)    N( x, z, v, u, f, k)    W( z, f, k)    X( x, z, v, u, f, k)    Y( x, z, v, u, f, k)

Proof of Theorem cnfcom3
StepHypRef Expression
1 omelon 8543 . . . . . 6  |-  om  e.  On
2 cnfcom.a . . . . . . 7  |-  ( ph  ->  A  e.  On )
3 suppssdm 7308 . . . . . . . . 9  |-  ( F supp  (/) )  C_  dom  F
4 cnfcom.f . . . . . . . . . . . . 13  |-  F  =  ( `' ( om CNF 
A ) `  B
)
5 cnfcom.s . . . . . . . . . . . . . . . 16  |-  S  =  dom  ( om CNF  A
)
61a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  om  e.  On )
75, 6, 2cantnff1o 8593 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
) )
8 f1ocnv 6149 . . . . . . . . . . . . . . 15  |-  ( ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
)  ->  `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S )
9 f1of 6137 . . . . . . . . . . . . . . 15  |-  ( `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S  ->  `' ( om CNF  A ) : ( om  ^o  A ) --> S )
107, 8, 93syl 18 . . . . . . . . . . . . . 14  |-  ( ph  ->  `' ( om CNF  A
) : ( om 
^o  A ) --> S )
11 cnfcom.b . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
1210, 11ffvelrnd 6360 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' ( om CNF 
A ) `  B
)  e.  S )
134, 12syl5eqel 2705 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  S )
145, 6, 2cantnfs 8563 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  e.  S  <->  ( F : A --> om  /\  F finSupp 
(/) ) ) )
1513, 14mpbid 222 . . . . . . . . . . 11  |-  ( ph  ->  ( F : A --> om  /\  F finSupp  (/) ) )
1615simpld 475 . . . . . . . . . 10  |-  ( ph  ->  F : A --> om )
17 fdm 6051 . . . . . . . . . 10  |-  ( F : A --> om  ->  dom 
F  =  A )
1816, 17syl 17 . . . . . . . . 9  |-  ( ph  ->  dom  F  =  A )
193, 18syl5sseq 3653 . . . . . . . 8  |-  ( ph  ->  ( F supp  (/) )  C_  A )
20 cnfcom.w . . . . . . . . 9  |-  W  =  ( G `  U. dom  G )
21 ovex 6678 . . . . . . . . . . . . . . 15  |-  ( F supp  (/) )  e.  _V
22 cnfcom.g . . . . . . . . . . . . . . . 16  |-  G  = OrdIso
(  _E  ,  ( F supp  (/) ) )
2322oion 8441 . . . . . . . . . . . . . . 15  |-  ( ( F supp  (/) )  e.  _V  ->  dom  G  e.  On )
2421, 23ax-mp 5 . . . . . . . . . . . . . 14  |-  dom  G  e.  On
2524elexi 3213 . . . . . . . . . . . . 13  |-  dom  G  e.  _V
2625uniex 6953 . . . . . . . . . . . 12  |-  U. dom  G  e.  _V
2726sucid 5804 . . . . . . . . . . 11  |-  U. dom  G  e.  suc  U. dom  G
28 cnfcom.h . . . . . . . . . . . 12  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
29 cnfcom.t . . . . . . . . . . . 12  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
30 cnfcom.m . . . . . . . . . . . 12  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
31 cnfcom.k . . . . . . . . . . . 12  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
32 cnfcom3.1 . . . . . . . . . . . . 13  |-  ( ph  ->  om  C_  B )
33 peano1 7085 . . . . . . . . . . . . . 14  |-  (/)  e.  om
3433a1i 11 . . . . . . . . . . . . 13  |-  ( ph  -> 
(/)  e.  om )
3532, 34sseldd 3604 . . . . . . . . . . . 12  |-  ( ph  -> 
(/)  e.  B )
365, 2, 11, 4, 22, 28, 29, 30, 31, 20, 35cnfcom2lem 8598 . . . . . . . . . . 11  |-  ( ph  ->  dom  G  =  suc  U.
dom  G )
3727, 36syl5eleqr 2708 . . . . . . . . . 10  |-  ( ph  ->  U. dom  G  e. 
dom  G )
3822oif 8435 . . . . . . . . . . 11  |-  G : dom  G --> ( F supp  (/) )
3938ffvelrni 6358 . . . . . . . . . 10  |-  ( U. dom  G  e.  dom  G  ->  ( G `  U. dom  G )  e.  ( F supp  (/) ) )
4037, 39syl 17 . . . . . . . . 9  |-  ( ph  ->  ( G `  U. dom  G )  e.  ( F supp  (/) ) )
4120, 40syl5eqel 2705 . . . . . . . 8  |-  ( ph  ->  W  e.  ( F supp  (/) ) )
4219, 41sseldd 3604 . . . . . . 7  |-  ( ph  ->  W  e.  A )
43 onelon 5748 . . . . . . 7  |-  ( ( A  e.  On  /\  W  e.  A )  ->  W  e.  On )
442, 42, 43syl2anc 693 . . . . . 6  |-  ( ph  ->  W  e.  On )
45 oecl 7617 . . . . . 6  |-  ( ( om  e.  On  /\  W  e.  On )  ->  ( om  ^o  W
)  e.  On )
461, 44, 45sylancr 695 . . . . 5  |-  ( ph  ->  ( om  ^o  W
)  e.  On )
4716, 42ffvelrnd 6360 . . . . . 6  |-  ( ph  ->  ( F `  W
)  e.  om )
48 nnon 7071 . . . . . 6  |-  ( ( F `  W )  e.  om  ->  ( F `  W )  e.  On )
4947, 48syl 17 . . . . 5  |-  ( ph  ->  ( F `  W
)  e.  On )
50 cnfcom.y . . . . . 6  |-  Y  =  ( u  e.  ( F `  W ) ,  v  e.  ( om  ^o  W ) 
|->  ( ( ( om 
^o  W )  .o  u )  +o  v
) )
51 cnfcom.x . . . . . 6  |-  X  =  ( u  e.  ( F `  W ) ,  v  e.  ( om  ^o  W ) 
|->  ( ( ( F `
 W )  .o  v )  +o  u
) )
5250, 51omf1o 8063 . . . . 5  |-  ( ( ( om  ^o  W
)  e.  On  /\  ( F `  W )  e.  On )  -> 
( X  o.  `' Y ) : ( ( om  ^o  W
)  .o  ( F `
 W ) ) -1-1-onto-> ( ( F `  W
)  .o  ( om 
^o  W ) ) )
5346, 49, 52syl2anc 693 . . . 4  |-  ( ph  ->  ( X  o.  `' Y ) : ( ( om  ^o  W
)  .o  ( F `
 W ) ) -1-1-onto-> ( ( F `  W
)  .o  ( om 
^o  W ) ) )
54 ffn 6045 . . . . . . . . . . 11  |-  ( F : A --> om  ->  F  Fn  A )
5516, 54syl 17 . . . . . . . . . 10  |-  ( ph  ->  F  Fn  A )
56 0ex 4790 . . . . . . . . . . 11  |-  (/)  e.  _V
5756a1i 11 . . . . . . . . . 10  |-  ( ph  -> 
(/)  e.  _V )
58 elsuppfn 7303 . . . . . . . . . 10  |-  ( ( F  Fn  A  /\  A  e.  On  /\  (/)  e.  _V )  ->  ( W  e.  ( F supp  (/) )  <->  ( W  e.  A  /\  ( F `  W )  =/=  (/) ) ) )
5955, 2, 57, 58syl3anc 1326 . . . . . . . . 9  |-  ( ph  ->  ( W  e.  ( F supp  (/) )  <->  ( W  e.  A  /\  ( F `  W )  =/=  (/) ) ) )
60 simpr 477 . . . . . . . . 9  |-  ( ( W  e.  A  /\  ( F `  W )  =/=  (/) )  ->  ( F `  W )  =/=  (/) )
6159, 60syl6bi 243 . . . . . . . 8  |-  ( ph  ->  ( W  e.  ( F supp  (/) )  ->  ( F `  W )  =/=  (/) ) )
6241, 61mpd 15 . . . . . . 7  |-  ( ph  ->  ( F `  W
)  =/=  (/) )
63 on0eln0 5780 . . . . . . . 8  |-  ( ( F `  W )  e.  On  ->  ( (/) 
e.  ( F `  W )  <->  ( F `  W )  =/=  (/) ) )
6447, 48, 633syl 18 . . . . . . 7  |-  ( ph  ->  ( (/)  e.  ( F `  W )  <->  ( F `  W )  =/=  (/) ) )
6562, 64mpbird 247 . . . . . 6  |-  ( ph  -> 
(/)  e.  ( F `  W ) )
665, 2, 11, 4, 22, 28, 29, 30, 31, 20, 32cnfcom3lem 8600 . . . . . . 7  |-  ( ph  ->  W  e.  ( On 
\  1o ) )
67 ondif1 7581 . . . . . . . 8  |-  ( W  e.  ( On  \  1o )  <->  ( W  e.  On  /\  (/)  e.  W
) )
6867simprbi 480 . . . . . . 7  |-  ( W  e.  ( On  \  1o )  ->  (/)  e.  W
)
6966, 68syl 17 . . . . . 6  |-  ( ph  -> 
(/)  e.  W )
70 omabs 7727 . . . . . 6  |-  ( ( ( ( F `  W )  e.  om  /\  (/)  e.  ( F `  W ) )  /\  ( W  e.  On  /\  (/)  e.  W ) )  ->  ( ( F `
 W )  .o  ( om  ^o  W
) )  =  ( om  ^o  W ) )
7147, 65, 44, 69, 70syl22anc 1327 . . . . 5  |-  ( ph  ->  ( ( F `  W )  .o  ( om  ^o  W ) )  =  ( om  ^o  W ) )
72 f1oeq3 6129 . . . . 5  |-  ( ( ( F `  W
)  .o  ( om 
^o  W ) )  =  ( om  ^o  W )  ->  (
( X  o.  `' Y ) : ( ( om  ^o  W
)  .o  ( F `
 W ) ) -1-1-onto-> ( ( F `  W
)  .o  ( om 
^o  W ) )  <-> 
( X  o.  `' Y ) : ( ( om  ^o  W
)  .o  ( F `
 W ) ) -1-1-onto-> ( om  ^o  W ) ) )
7371, 72syl 17 . . . 4  |-  ( ph  ->  ( ( X  o.  `' Y ) : ( ( om  ^o  W
)  .o  ( F `
 W ) ) -1-1-onto-> ( ( F `  W
)  .o  ( om 
^o  W ) )  <-> 
( X  o.  `' Y ) : ( ( om  ^o  W
)  .o  ( F `
 W ) ) -1-1-onto-> ( om  ^o  W ) ) )
7453, 73mpbid 222 . . 3  |-  ( ph  ->  ( X  o.  `' Y ) : ( ( om  ^o  W
)  .o  ( F `
 W ) ) -1-1-onto-> ( om  ^o  W ) )
755, 2, 11, 4, 22, 28, 29, 30, 31, 20, 35cnfcom2 8599 . . 3  |-  ( ph  ->  ( T `  dom  G ) : B -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) )
76 f1oco 6159 . . 3  |-  ( ( ( X  o.  `' Y ) : ( ( om  ^o  W
)  .o  ( F `
 W ) ) -1-1-onto-> ( om  ^o  W )  /\  ( T `  dom  G ) : B -1-1-onto-> (
( om  ^o  W
)  .o  ( F `
 W ) ) )  ->  ( ( X  o.  `' Y
)  o.  ( T `
 dom  G )
) : B -1-1-onto-> ( om 
^o  W ) )
7774, 75, 76syl2anc 693 . 2  |-  ( ph  ->  ( ( X  o.  `' Y )  o.  ( T `  dom  G ) ) : B -1-1-onto-> ( om 
^o  W ) )
78 cnfcom.n . . 3  |-  N  =  ( ( X  o.  `' Y )  o.  ( T `  dom  G ) )
79 f1oeq1 6127 . . 3  |-  ( N  =  ( ( X  o.  `' Y )  o.  ( T `  dom  G ) )  -> 
( N : B -1-1-onto-> ( om  ^o  W )  <->  ( ( X  o.  `' Y
)  o.  ( T `
 dom  G )
) : B -1-1-onto-> ( om 
^o  W ) ) )
8078, 79ax-mp 5 . 2  |-  ( N : B -1-1-onto-> ( om  ^o  W
)  <->  ( ( X  o.  `' Y )  o.  ( T `  dom  G ) ) : B -1-1-onto-> ( om  ^o  W
) )
8177, 80sylibr 224 1  |-  ( ph  ->  N : B -1-1-onto-> ( om 
^o  W ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    _E cep 5028   `'ccnv 5113   dom cdm 5114    o. ccom 5118   Oncon0 5723   suc csuc 5725    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   supp csupp 7295  seq𝜔cseqom 7542   1oc1o 7553    +o coa 7557    .o comu 7558    ^o coe 7559   finSupp cfsupp 8275  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  cnfcom3clem  8602
  Copyright terms: Public domain W3C validator