Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem3 Structured version   Visualization version   Unicode version

Theorem cvmliftlem3 31269
Description: Lemma for cvmlift 31281. Since  1st `  ( T `  M
) is a neighborhood of  ( G " W ), every element  A  e.  W satisfies  ( G `  A )  e.  ( 1st `  ( T `
 M ) ). (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
cvmliftlem.b  |-  B  = 
U. C
cvmliftlem.x  |-  X  = 
U. J
cvmliftlem.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftlem.p  |-  ( ph  ->  P  e.  B )
cvmliftlem.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftlem.n  |-  ( ph  ->  N  e.  NN )
cvmliftlem.t  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
cvmliftlem.a  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
cvmliftlem.l  |-  L  =  ( topGen `  ran  (,) )
cvmliftlem1.m  |-  ( (
ph  /\  ps )  ->  M  e.  ( 1 ... N ) )
cvmliftlem3.3  |-  W  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )
cvmliftlem3.m  |-  ( (
ph  /\  ps )  ->  A  e.  W )
Assertion
Ref Expression
cvmliftlem3  |-  ( (
ph  /\  ps )  ->  ( G `  A
)  e.  ( 1st `  ( T `  M
) ) )
Distinct variable groups:    v, B    j, k, s, u, v, F    j, M, k, s, u, v    P, k, u, v    C, j, k, s, u, v    ph, j, s    k, N, u, v    S, j, k, s, u, v   
j, X    j, G, k, s, u, v    T, j, k, s, u, v   
j, J, k, s, u, v    k, W
Allowed substitution hints:    ph( v, u, k)    ps( v, u, j, k, s)    A( v, u, j, k, s)    B( u, j, k, s)    P( j, s)    L( v, u, j, k, s)    N( j, s)    W( v, u, j, s)    X( v, u, k, s)

Proof of Theorem cvmliftlem3
StepHypRef Expression
1 cvmliftlem1.m . . 3  |-  ( (
ph  /\  ps )  ->  M  e.  ( 1 ... N ) )
2 cvmliftlem.a . . . 4  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
32adantr 481 . . 3  |-  ( (
ph  /\  ps )  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
4 oveq1 6657 . . . . . . . . 9  |-  ( k  =  M  ->  (
k  -  1 )  =  ( M  - 
1 ) )
54oveq1d 6665 . . . . . . . 8  |-  ( k  =  M  ->  (
( k  -  1 )  /  N )  =  ( ( M  -  1 )  /  N ) )
6 oveq1 6657 . . . . . . . 8  |-  ( k  =  M  ->  (
k  /  N )  =  ( M  /  N ) )
75, 6oveq12d 6668 . . . . . . 7  |-  ( k  =  M  ->  (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) )  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N
) ) )
8 cvmliftlem3.3 . . . . . . 7  |-  W  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )
97, 8syl6eqr 2674 . . . . . 6  |-  ( k  =  M  ->  (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) )  =  W )
109imaeq2d 5466 . . . . 5  |-  ( k  =  M  ->  ( G " ( ( ( k  -  1 )  /  N ) [,] ( k  /  N
) ) )  =  ( G " W
) )
11 fveq2 6191 . . . . . 6  |-  ( k  =  M  ->  ( T `  k )  =  ( T `  M ) )
1211fveq2d 6195 . . . . 5  |-  ( k  =  M  ->  ( 1st `  ( T `  k ) )  =  ( 1st `  ( T `  M )
) )
1310, 12sseq12d 3634 . . . 4  |-  ( k  =  M  ->  (
( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) )  <->  ( G " W )  C_  ( 1st `  ( T `  M ) ) ) )
1413rspcv 3305 . . 3  |-  ( M  e.  ( 1 ... N )  ->  ( A. k  e.  (
1 ... N ) ( G " ( ( ( k  -  1 )  /  N ) [,] ( k  /  N ) ) ) 
C_  ( 1st `  ( T `  k )
)  ->  ( G " W )  C_  ( 1st `  ( T `  M ) ) ) )
151, 3, 14sylc 65 . 2  |-  ( (
ph  /\  ps )  ->  ( G " W
)  C_  ( 1st `  ( T `  M
) ) )
16 cvmliftlem3.m . . 3  |-  ( (
ph  /\  ps )  ->  A  e.  W )
17 cvmliftlem.g . . . . . . 7  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
18 iiuni 22684 . . . . . . . 8  |-  ( 0 [,] 1 )  = 
U. II
19 cvmliftlem.x . . . . . . . 8  |-  X  = 
U. J
2018, 19cnf 21050 . . . . . . 7  |-  ( G  e.  ( II  Cn  J )  ->  G : ( 0 [,] 1 ) --> X )
2117, 20syl 17 . . . . . 6  |-  ( ph  ->  G : ( 0 [,] 1 ) --> X )
2221adantr 481 . . . . 5  |-  ( (
ph  /\  ps )  ->  G : ( 0 [,] 1 ) --> X )
23 ffun 6048 . . . . 5  |-  ( G : ( 0 [,] 1 ) --> X  ->  Fun  G )
2422, 23syl 17 . . . 4  |-  ( (
ph  /\  ps )  ->  Fun  G )
25 cvmliftlem.1 . . . . . 6  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
26 cvmliftlem.b . . . . . 6  |-  B  = 
U. C
27 cvmliftlem.f . . . . . 6  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
28 cvmliftlem.p . . . . . 6  |-  ( ph  ->  P  e.  B )
29 cvmliftlem.e . . . . . 6  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
30 cvmliftlem.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
31 cvmliftlem.t . . . . . 6  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
32 cvmliftlem.l . . . . . 6  |-  L  =  ( topGen `  ran  (,) )
3325, 26, 19, 27, 17, 28, 29, 30, 31, 2, 32, 1, 8cvmliftlem2 31268 . . . . 5  |-  ( (
ph  /\  ps )  ->  W  C_  ( 0 [,] 1 ) )
34 fdm 6051 . . . . . 6  |-  ( G : ( 0 [,] 1 ) --> X  ->  dom  G  =  ( 0 [,] 1 ) )
3522, 34syl 17 . . . . 5  |-  ( (
ph  /\  ps )  ->  dom  G  =  ( 0 [,] 1 ) )
3633, 35sseqtr4d 3642 . . . 4  |-  ( (
ph  /\  ps )  ->  W  C_  dom  G )
37 funfvima2 6493 . . . 4  |-  ( ( Fun  G  /\  W  C_ 
dom  G )  -> 
( A  e.  W  ->  ( G `  A
)  e.  ( G
" W ) ) )
3824, 36, 37syl2anc 693 . . 3  |-  ( (
ph  /\  ps )  ->  ( A  e.  W  ->  ( G `  A
)  e.  ( G
" W ) ) )
3916, 38mpd 15 . 2  |-  ( (
ph  /\  ps )  ->  ( G `  A
)  e.  ( G
" W ) )
4015, 39sseldd 3604 1  |-  ( (
ph  /\  ps )  ->  ( G `  A
)  e.  ( 1st `  ( T `  M
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436   U_ciun 4520    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   0cc0 9936   1c1 9937    - cmin 10266    / cdiv 10684   NNcn 11020   (,)cioo 12175   [,]cicc 12178   ...cfz 12326   ↾t crest 16081   topGenctg 16098    Cn ccn 21028   Homeochmeo 21556   IIcii 22678   CovMap ccvm 31237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-ii 22680
This theorem is referenced by:  cvmliftlem6  31272  cvmliftlem8  31274  cvmliftlem9  31275
  Copyright terms: Public domain W3C validator