Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0fr Structured version   Visualization version   Unicode version

Theorem dignn0fr 42395
Description: The digits of the fractional part of a nonnegative integer are 0. (Contributed by AV, 23-May-2020.)
Assertion
Ref Expression
dignn0fr  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  ( K (digit `  B ) N )  =  0 )

Proof of Theorem dignn0fr
StepHypRef Expression
1 id 22 . . 3  |-  ( B  e.  NN  ->  B  e.  NN )
2 eldifi 3732 . . 3  |-  ( K  e.  ( ZZ  \  NN0 )  ->  K  e.  ZZ )
3 nn0re 11301 . . . 4  |-  ( N  e.  NN0  ->  N  e.  RR )
4 nn0ge0 11318 . . . 4  |-  ( N  e.  NN0  ->  0  <_  N )
5 elrege0 12278 . . . 4  |-  ( N  e.  ( 0 [,) +oo )  <->  ( N  e.  RR  /\  0  <_  N ) )
63, 4, 5sylanbrc 698 . . 3  |-  ( N  e.  NN0  ->  N  e.  ( 0 [,) +oo ) )
7 digval 42392 . . 3  |-  ( ( B  e.  NN  /\  K  e.  ZZ  /\  N  e.  ( 0 [,) +oo ) )  ->  ( K (digit `  B ) N )  =  ( ( |_ `  (
( B ^ -u K
)  x.  N ) )  mod  B ) )
81, 2, 6, 7syl3an 1368 . 2  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  ( K (digit `  B ) N )  =  ( ( |_ `  (
( B ^ -u K
)  x.  N ) )  mod  B ) )
9 nnz 11399 . . . . . . . 8  |-  ( B  e.  NN  ->  B  e.  ZZ )
10 eldif 3584 . . . . . . . . . 10  |-  ( K  e.  ( ZZ  \  NN0 )  <->  ( K  e.  ZZ  /\  -.  K  e.  NN0 ) )
11 znnn0nn 11489 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  -.  K  e.  NN0 )  ->  -u K  e.  NN )
1210, 11sylbi 207 . . . . . . . . 9  |-  ( K  e.  ( ZZ  \  NN0 )  ->  -u K  e.  NN )
1312nnnn0d 11351 . . . . . . . 8  |-  ( K  e.  ( ZZ  \  NN0 )  ->  -u K  e.  NN0 )
14 zexpcl 12875 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  -u K  e.  NN0 )  ->  ( B ^ -u K
)  e.  ZZ )
159, 13, 14syl2an 494 . . . . . . 7  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 ) )  -> 
( B ^ -u K
)  e.  ZZ )
16153adant3 1081 . . . . . 6  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  ( B ^ -u K )  e.  ZZ )
17 nn0z 11400 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ZZ )
18173ad2ant3 1084 . . . . . 6  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  N  e.  ZZ )
1916, 18zmulcld 11488 . . . . 5  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  (
( B ^ -u K
)  x.  N )  e.  ZZ )
20 flid 12609 . . . . 5  |-  ( ( ( B ^ -u K
)  x.  N )  e.  ZZ  ->  ( |_ `  ( ( B ^ -u K )  x.  N ) )  =  ( ( B ^ -u K )  x.  N ) )
2119, 20syl 17 . . . 4  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  ( |_ `  ( ( B ^ -u K )  x.  N ) )  =  ( ( B ^ -u K )  x.  N ) )
2221oveq1d 6665 . . 3  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  (
( |_ `  (
( B ^ -u K
)  x.  N ) )  mod  B )  =  ( ( ( B ^ -u K
)  x.  N )  mod  B ) )
23 nnre 11027 . . . . . . . . . 10  |-  ( B  e.  NN  ->  B  e.  RR )
24 reexpcl 12877 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  -u K  e.  NN0 )  ->  ( B ^ -u K
)  e.  RR )
2523, 13, 24syl2an 494 . . . . . . . . 9  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 ) )  -> 
( B ^ -u K
)  e.  RR )
2625recnd 10068 . . . . . . . 8  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 ) )  -> 
( B ^ -u K
)  e.  CC )
27263adant3 1081 . . . . . . 7  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  ( B ^ -u K )  e.  CC )
28 nn0cn 11302 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  CC )
29283ad2ant3 1084 . . . . . . 7  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  N  e.  CC )
30 nncn 11028 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  e.  CC )
31 nnne0 11053 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  =/=  0 )
3230, 31jca 554 . . . . . . . 8  |-  ( B  e.  NN  ->  ( B  e.  CC  /\  B  =/=  0 ) )
33323ad2ant1 1082 . . . . . . 7  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  ( B  e.  CC  /\  B  =/=  0 ) )
34 div23 10704 . . . . . . 7  |-  ( ( ( B ^ -u K
)  e.  CC  /\  N  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  -> 
( ( ( B ^ -u K )  x.  N )  /  B )  =  ( ( ( B ^ -u K )  /  B
)  x.  N ) )
3527, 29, 33, 34syl3anc 1326 . . . . . 6  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  (
( ( B ^ -u K )  x.  N
)  /  B )  =  ( ( ( B ^ -u K
)  /  B )  x.  N ) )
36303ad2ant1 1082 . . . . . . . . 9  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  B  e.  CC )
37313ad2ant1 1082 . . . . . . . . 9  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  B  =/=  0 )
3812nnzd 11481 . . . . . . . . . 10  |-  ( K  e.  ( ZZ  \  NN0 )  ->  -u K  e.  ZZ )
39383ad2ant2 1083 . . . . . . . . 9  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  -u K  e.  ZZ )
4036, 37, 39expm1d 13018 . . . . . . . 8  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  ( B ^ ( -u K  -  1 ) )  =  ( ( B ^ -u K )  /  B ) )
4140eqcomd 2628 . . . . . . 7  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  (
( B ^ -u K
)  /  B )  =  ( B ^
( -u K  -  1 ) ) )
4241oveq1d 6665 . . . . . 6  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  (
( ( B ^ -u K )  /  B
)  x.  N )  =  ( ( B ^ ( -u K  -  1 ) )  x.  N ) )
4335, 42eqtrd 2656 . . . . 5  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  (
( ( B ^ -u K )  x.  N
)  /  B )  =  ( ( B ^ ( -u K  -  1 ) )  x.  N ) )
44 nnm1nn0 11334 . . . . . . . . 9  |-  ( -u K  e.  NN  ->  (
-u K  -  1 )  e.  NN0 )
4512, 44syl 17 . . . . . . . 8  |-  ( K  e.  ( ZZ  \  NN0 )  ->  ( -u K  -  1 )  e.  NN0 )
46 zexpcl 12875 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  ( -u K  -  1 )  e.  NN0 )  ->  ( B ^ ( -u K  -  1 ) )  e.  ZZ )
479, 45, 46syl2an 494 . . . . . . 7  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 ) )  -> 
( B ^ ( -u K  -  1 ) )  e.  ZZ )
48473adant3 1081 . . . . . 6  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  ( B ^ ( -u K  -  1 ) )  e.  ZZ )
4948, 18zmulcld 11488 . . . . 5  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  (
( B ^ ( -u K  -  1 ) )  x.  N )  e.  ZZ )
5043, 49eqeltrd 2701 . . . 4  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  (
( ( B ^ -u K )  x.  N
)  /  B )  e.  ZZ )
51253adant3 1081 . . . . . 6  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  ( B ^ -u K )  e.  RR )
5233ad2ant3 1084 . . . . . 6  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  N  e.  RR )
5351, 52remulcld 10070 . . . . 5  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  (
( B ^ -u K
)  x.  N )  e.  RR )
54 nnrp 11842 . . . . . 6  |-  ( B  e.  NN  ->  B  e.  RR+ )
55543ad2ant1 1082 . . . . 5  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  B  e.  RR+ )
56 mod0 12675 . . . . 5  |-  ( ( ( ( B ^ -u K )  x.  N
)  e.  RR  /\  B  e.  RR+ )  -> 
( ( ( ( B ^ -u K
)  x.  N )  mod  B )  =  0  <->  ( ( ( B ^ -u K
)  x.  N )  /  B )  e.  ZZ ) )
5753, 55, 56syl2anc 693 . . . 4  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  (
( ( ( B ^ -u K )  x.  N )  mod 
B )  =  0  <-> 
( ( ( B ^ -u K )  x.  N )  /  B )  e.  ZZ ) )
5850, 57mpbird 247 . . 3  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  (
( ( B ^ -u K )  x.  N
)  mod  B )  =  0 )
5922, 58eqtrd 2656 . 2  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  (
( |_ `  (
( B ^ -u K
)  x.  N ) )  mod  B )  =  0 )
608, 59eqtrd 2656 1  |-  ( ( B  e.  NN  /\  K  e.  ( ZZ  \ 
NN0 )  /\  N  e.  NN0 )  ->  ( K (digit `  B ) N )  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941   +oocpnf 10071    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   RR+crp 11832   [,)cico 12177   |_cfl 12591    mod cmo 12668   ^cexp 12860  digitcdig 42389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-dig 42390
This theorem is referenced by:  dig1  42402
  Copyright terms: Public domain W3C validator