MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  discr1 Structured version   Visualization version   Unicode version

Theorem discr1 13000
Description: A nonnegative quadratic form has nonnegative leading coefficient. (Contributed by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
discr.1  |-  ( ph  ->  A  e.  RR )
discr.2  |-  ( ph  ->  B  e.  RR )
discr.3  |-  ( ph  ->  C  e.  RR )
discr.4  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
) )
discr1.5  |-  X  =  if ( 1  <_ 
( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 )
Assertion
Ref Expression
discr1  |-  ( ph  ->  0  <_  A )
Distinct variable groups:    x, A    x, B    x, C    x, X    ph, x

Proof of Theorem discr1
StepHypRef Expression
1 discr1.5 . . . . 5  |-  X  =  if ( 1  <_ 
( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 )
2 discr.2 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR )
32adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  B  e.  RR )
4 discr.3 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR )
54adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  0 )  ->  C  e.  RR )
6 0re 10040 . . . . . . . . . 10  |-  0  e.  RR
7 ifcl 4130 . . . . . . . . . 10  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  C ,  C , 
0 )  e.  RR )
85, 6, 7sylancl 694 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  if ( 0  <_  C ,  C ,  0 )  e.  RR )
93, 8readdcld 10069 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  ( B  +  if (
0  <_  C ,  C ,  0 ) )  e.  RR )
10 peano2re 10209 . . . . . . . 8  |-  ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  e.  RR  ->  ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  e.  RR )
119, 10syl 17 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  (
( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  e.  RR )
12 discr.1 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
1312adantr 481 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  A  e.  RR )
1413renegcld 10457 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  -u A  e.  RR )
1512lt0neg1d 10597 . . . . . . . . 9  |-  ( ph  ->  ( A  <  0  <->  0  <  -u A ) )
1615biimpa 501 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  0  <  -u A )
1716gt0ne0d 10592 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  -u A  =/=  0 )
1811, 14, 17redivcld 10853 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  e.  RR )
19 1re 10039 . . . . . 6  |-  1  e.  RR
20 ifcl 4130 . . . . . 6  |-  ( ( ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  e.  RR  /\  1  e.  RR )  ->  if ( 1  <_  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 )  e.  RR )
2118, 19, 20sylancl 694 . . . . 5  |-  ( (
ph  /\  A  <  0 )  ->  if ( 1  <_  (
( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 )  e.  RR )
221, 21syl5eqel 2705 . . . 4  |-  ( (
ph  /\  A  <  0 )  ->  X  e.  RR )
23 discr.4 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
) )
2423ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. x  e.  RR  0  <_  ( ( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C ) )
2524adantr 481 . . . 4  |-  ( (
ph  /\  A  <  0 )  ->  A. x  e.  RR  0  <_  (
( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C ) )
26 oveq1 6657 . . . . . . . . 9  |-  ( x  =  X  ->  (
x ^ 2 )  =  ( X ^
2 ) )
2726oveq2d 6666 . . . . . . . 8  |-  ( x  =  X  ->  ( A  x.  ( x ^ 2 ) )  =  ( A  x.  ( X ^ 2 ) ) )
28 oveq2 6658 . . . . . . . 8  |-  ( x  =  X  ->  ( B  x.  x )  =  ( B  x.  X ) )
2927, 28oveq12d 6668 . . . . . . 7  |-  ( x  =  X  ->  (
( A  x.  (
x ^ 2 ) )  +  ( B  x.  x ) )  =  ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) ) )
3029oveq1d 6665 . . . . . 6  |-  ( x  =  X  ->  (
( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C )  =  ( ( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C ) )
3130breq2d 4665 . . . . 5  |-  ( x  =  X  ->  (
0  <_  ( (
( A  x.  (
x ^ 2 ) )  +  ( B  x.  x ) )  +  C )  <->  0  <_  ( ( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C ) ) )
3231rspcv 3305 . . . 4  |-  ( X  e.  RR  ->  ( A. x  e.  RR  0  <_  ( ( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C )  ->  0  <_  ( ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) )  +  C
) ) )
3322, 25, 32sylc 65 . . 3  |-  ( (
ph  /\  A  <  0 )  ->  0  <_  ( ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) )  +  C
) )
34 resqcl 12931 . . . . . . . . 9  |-  ( X  e.  RR  ->  ( X ^ 2 )  e.  RR )
3522, 34syl 17 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  ( X ^ 2 )  e.  RR )
3613, 35remulcld 10070 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  ( A  x.  ( X ^ 2 ) )  e.  RR )
373, 22remulcld 10070 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  ( B  x.  X )  e.  RR )
3836, 37readdcld 10069 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  (
( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  e.  RR )
3938, 5readdcld 10069 . . . . 5  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C )  e.  RR )
4013, 22remulcld 10070 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  ( A  x.  X )  e.  RR )
4140, 9readdcld 10069 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  (
( A  x.  X
)  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  e.  RR )
4241, 22remulcld 10070 . . . . 5  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  x.  X
)  e.  RR )
436a1i 11 . . . . 5  |-  ( (
ph  /\  A  <  0 )  ->  0  e.  RR )
448, 22remulcld 10070 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  X )  e.  RR )
45 max2 12018 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  C  <_  if (
0  <_  C ,  C ,  0 ) )
466, 5, 45sylancr 695 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  C  <_  if ( 0  <_  C ,  C , 
0 ) )
47 max1 12016 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  0  <_  if (
0  <_  C ,  C ,  0 ) )
486, 5, 47sylancr 695 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  0  <_  if ( 0  <_  C ,  C , 
0 ) )
49 max1 12016 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  e.  RR )  ->  1  <_  if ( 1  <_  (
( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 ) )
5019, 18, 49sylancr 695 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  0 )  ->  1  <_  if ( 1  <_ 
( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 ) )
5150, 1syl6breqr 4695 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  1  <_  X )
528, 22, 48, 51lemulge11d 10961 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  if ( 0  <_  C ,  C ,  0 )  <_  ( if ( 0  <_  C ,  C ,  0 )  x.  X ) )
535, 8, 44, 46, 52letrd 10194 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  C  <_  ( if ( 0  <_  C ,  C ,  0 )  x.  X ) )
545, 44, 38, 53leadd2dd 10642 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C )  <_ 
( ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) )  +  ( if ( 0  <_  C ,  C , 
0 )  x.  X
) ) )
5540, 3readdcld 10069 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  (
( A  x.  X
)  +  B )  e.  RR )
5655recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  (
( A  x.  X
)  +  B )  e.  CC )
578recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  if ( 0  <_  C ,  C ,  0 )  e.  CC )
5822recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  X  e.  CC )
5956, 57, 58adddird 10065 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( ( A  x.  X )  +  B )  +  if ( 0  <_  C ,  C ,  0 ) )  x.  X )  =  ( ( ( ( A  x.  X
)  +  B )  x.  X )  +  ( if ( 0  <_  C ,  C ,  0 )  x.  X ) ) )
6040recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  ( A  x.  X )  e.  CC )
613recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  B  e.  CC )
6260, 61, 57addassd 10062 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  B
)  +  if ( 0  <_  C ,  C ,  0 ) )  =  ( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) ) )
6362oveq1d 6665 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( ( A  x.  X )  +  B )  +  if ( 0  <_  C ,  C ,  0 ) )  x.  X )  =  ( ( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  x.  X
) )
6460, 61, 58adddird 10065 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  B
)  x.  X )  =  ( ( ( A  x.  X )  x.  X )  +  ( B  x.  X
) ) )
6513recnd 10068 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  0 )  ->  A  e.  CC )
6665, 58, 58mulassd 10063 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  0 )  ->  (
( A  x.  X
)  x.  X )  =  ( A  x.  ( X  x.  X
) ) )
67 sqval 12922 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  ( X ^ 2 )  =  ( X  x.  X
) )
6858, 67syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  0 )  ->  ( X ^ 2 )  =  ( X  x.  X
) )
6968oveq2d 6666 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  0 )  ->  ( A  x.  ( X ^ 2 ) )  =  ( A  x.  ( X  x.  X
) ) )
7066, 69eqtr4d 2659 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  0 )  ->  (
( A  x.  X
)  x.  X )  =  ( A  x.  ( X ^ 2 ) ) )
7170oveq1d 6665 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  x.  X
)  +  ( B  x.  X ) )  =  ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) ) )
7264, 71eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  B
)  x.  X )  =  ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) ) )
7372oveq1d 6665 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( ( A  x.  X )  +  B )  x.  X
)  +  ( if ( 0  <_  C ,  C ,  0 )  x.  X ) )  =  ( ( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  ( if ( 0  <_  C ,  C ,  0 )  x.  X ) ) )
7459, 63, 733eqtr3d 2664 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  x.  X
)  =  ( ( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  ( if ( 0  <_  C ,  C ,  0 )  x.  X ) ) )
7554, 74breqtrrd 4681 . . . . 5  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C )  <_ 
( ( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  x.  X
) )
7614, 22remulcld 10070 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  0 )  ->  ( -u A  x.  X )  e.  RR )
779ltp1d 10954 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  0 )  ->  ( B  +  if (
0  <_  C ,  C ,  0 ) )  <  ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 ) )
78 max2 12018 . . . . . . . . . . . . 13  |-  ( ( 1  e.  RR  /\  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  e.  RR )  ->  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  <_  if ( 1  <_  (
( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 ) )
7919, 18, 78sylancr 695 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  <_  if ( 1  <_  (
( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 ) )
8079, 1syl6breqr 4695 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  <_  X )
81 ledivmul 10899 . . . . . . . . . . . 12  |-  ( ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  e.  RR  /\  X  e.  RR  /\  ( -u A  e.  RR  /\  0  <  -u A ) )  ->  ( ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  <_  X 
<->  ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  <_  ( -u A  x.  X ) ) )
8211, 22, 14, 16, 81syl112anc 1330 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  <_  X  <->  ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  <_  ( -u A  x.  X ) ) )
8380, 82mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  0 )  ->  (
( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  <_  ( -u A  x.  X ) )
849, 11, 76, 77, 83ltletrd 10197 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  ( B  +  if (
0  <_  C ,  C ,  0 ) )  <  ( -u A  x.  X )
)
8565, 58mulneg1d 10483 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  0 )  ->  ( -u A  x.  X )  =  -u ( A  x.  X ) )
86 df-neg 10269 . . . . . . . . . 10  |-  -u ( A  x.  X )  =  ( 0  -  ( A  x.  X
) )
8785, 86syl6eq 2672 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  ( -u A  x.  X )  =  ( 0  -  ( A  x.  X
) ) )
8884, 87breqtrd 4679 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  ( B  +  if (
0  <_  C ,  C ,  0 ) )  <  ( 0  -  ( A  x.  X ) ) )
8940, 9, 43ltaddsub2d 10628 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  <  0  <->  ( B  +  if ( 0  <_  C ,  C ,  0 ) )  <  ( 0  -  ( A  x.  X ) ) ) )
9088, 89mpbird 247 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  (
( A  x.  X
)  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  <  0 )
9119a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  1  e.  RR )
92 0lt1 10550 . . . . . . . . . 10  |-  0  <  1
9392a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  0  <  1 )
9443, 91, 22, 93, 51ltletrd 10197 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  0  <  X )
95 ltmul1 10873 . . . . . . . 8  |-  ( ( ( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  e.  RR  /\  0  e.  RR  /\  ( X  e.  RR  /\  0  <  X ) )  ->  ( (
( A  x.  X
)  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  <  0  <->  (
( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  x.  X
)  <  ( 0  x.  X ) ) )
9641, 43, 22, 94, 95syl112anc 1330 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  <  0  <->  ( ( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  x.  X
)  <  ( 0  x.  X ) ) )
9790, 96mpbid 222 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  x.  X
)  <  ( 0  x.  X ) )
9858mul02d 10234 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  (
0  x.  X )  =  0 )
9997, 98breqtrd 4679 . . . . 5  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  x.  X
)  <  0 )
10039, 42, 43, 75, 99lelttrd 10195 . . . 4  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C )  <  0 )
101 ltnle 10117 . . . . 5  |-  ( ( ( ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) )  +  C
)  e.  RR  /\  0  e.  RR )  ->  ( ( ( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C )  <  0  <->  -.  0  <_  ( (
( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C ) ) )
10239, 6, 101sylancl 694 . . . 4  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) )  +  C
)  <  0  <->  -.  0  <_  ( ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) )  +  C
) ) )
103100, 102mpbid 222 . . 3  |-  ( (
ph  /\  A  <  0 )  ->  -.  0  <_  ( ( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C ) )
10433, 103pm2.65da 600 . 2  |-  ( ph  ->  -.  A  <  0
)
105 lelttric 10144 . . . 4  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  \/  A  <  0
) )
1066, 12, 105sylancr 695 . . 3  |-  ( ph  ->  ( 0  <_  A  \/  A  <  0
) )
107106ord 392 . 2  |-  ( ph  ->  ( -.  0  <_  A  ->  A  <  0
) )
108104, 107mt3d 140 1  |-  ( ph  ->  0  <_  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ifcif 4086   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   2c2 11070   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861
This theorem is referenced by:  discr  13001
  Copyright terms: Public domain W3C validator