MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modexp Structured version   Visualization version   Unicode version

Theorem modexp 12999
Description: Exponentiation property of the modulo operation, see theorem 5.2(c) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
modexp  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e. 
NN0  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A ^ C
)  mod  D )  =  ( ( B ^ C )  mod 
D ) )

Proof of Theorem modexp
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1087 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e. 
NN0  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  C  e.  NN0 )
2 id 22 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) )  ->  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) ) )
323adant2l 1320 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e. 
NN0  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) ) )
4 oveq2 6658 . . . . . 6  |-  ( x  =  0  ->  ( A ^ x )  =  ( A ^ 0 ) )
54oveq1d 6665 . . . . 5  |-  ( x  =  0  ->  (
( A ^ x
)  mod  D )  =  ( ( A ^ 0 )  mod 
D ) )
6 oveq2 6658 . . . . . 6  |-  ( x  =  0  ->  ( B ^ x )  =  ( B ^ 0 ) )
76oveq1d 6665 . . . . 5  |-  ( x  =  0  ->  (
( B ^ x
)  mod  D )  =  ( ( B ^ 0 )  mod 
D ) )
85, 7eqeq12d 2637 . . . 4  |-  ( x  =  0  ->  (
( ( A ^
x )  mod  D
)  =  ( ( B ^ x )  mod  D )  <->  ( ( A ^ 0 )  mod 
D )  =  ( ( B ^ 0 )  mod  D ) ) )
98imbi2d 330 . . 3  |-  ( x  =  0  ->  (
( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A ^ x
)  mod  D )  =  ( ( B ^ x )  mod 
D ) )  <->  ( (
( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) )  ->  ( ( A ^ 0 )  mod 
D )  =  ( ( B ^ 0 )  mod  D ) ) ) )
10 oveq2 6658 . . . . . 6  |-  ( x  =  k  ->  ( A ^ x )  =  ( A ^ k
) )
1110oveq1d 6665 . . . . 5  |-  ( x  =  k  ->  (
( A ^ x
)  mod  D )  =  ( ( A ^ k )  mod 
D ) )
12 oveq2 6658 . . . . . 6  |-  ( x  =  k  ->  ( B ^ x )  =  ( B ^ k
) )
1312oveq1d 6665 . . . . 5  |-  ( x  =  k  ->  (
( B ^ x
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )
1411, 13eqeq12d 2637 . . . 4  |-  ( x  =  k  ->  (
( ( A ^
x )  mod  D
)  =  ( ( B ^ x )  mod  D )  <->  ( ( A ^ k )  mod 
D )  =  ( ( B ^ k
)  mod  D )
) )
1514imbi2d 330 . . 3  |-  ( x  =  k  ->  (
( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A ^ x
)  mod  D )  =  ( ( B ^ x )  mod 
D ) )  <->  ( (
( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) )  ->  ( ( A ^ k )  mod 
D )  =  ( ( B ^ k
)  mod  D )
) ) )
16 oveq2 6658 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( A ^ x )  =  ( A ^ (
k  +  1 ) ) )
1716oveq1d 6665 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( A ^ x
)  mod  D )  =  ( ( A ^ ( k  +  1 ) )  mod 
D ) )
18 oveq2 6658 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( B ^ x )  =  ( B ^ (
k  +  1 ) ) )
1918oveq1d 6665 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( B ^ x
)  mod  D )  =  ( ( B ^ ( k  +  1 ) )  mod 
D ) )
2017, 19eqeq12d 2637 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( ( A ^
x )  mod  D
)  =  ( ( B ^ x )  mod  D )  <->  ( ( A ^ ( k  +  1 ) )  mod 
D )  =  ( ( B ^ (
k  +  1 ) )  mod  D ) ) )
2120imbi2d 330 . . 3  |-  ( x  =  ( k  +  1 )  ->  (
( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A ^ x
)  mod  D )  =  ( ( B ^ x )  mod 
D ) )  <->  ( (
( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) )  ->  ( ( A ^ ( k  +  1 ) )  mod 
D )  =  ( ( B ^ (
k  +  1 ) )  mod  D ) ) ) )
22 oveq2 6658 . . . . . 6  |-  ( x  =  C  ->  ( A ^ x )  =  ( A ^ C
) )
2322oveq1d 6665 . . . . 5  |-  ( x  =  C  ->  (
( A ^ x
)  mod  D )  =  ( ( A ^ C )  mod 
D ) )
24 oveq2 6658 . . . . . 6  |-  ( x  =  C  ->  ( B ^ x )  =  ( B ^ C
) )
2524oveq1d 6665 . . . . 5  |-  ( x  =  C  ->  (
( B ^ x
)  mod  D )  =  ( ( B ^ C )  mod 
D ) )
2623, 25eqeq12d 2637 . . . 4  |-  ( x  =  C  ->  (
( ( A ^
x )  mod  D
)  =  ( ( B ^ x )  mod  D )  <->  ( ( A ^ C )  mod 
D )  =  ( ( B ^ C
)  mod  D )
) )
2726imbi2d 330 . . 3  |-  ( x  =  C  ->  (
( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A ^ x
)  mod  D )  =  ( ( B ^ x )  mod 
D ) )  <->  ( (
( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) )  ->  ( ( A ^ C )  mod 
D )  =  ( ( B ^ C
)  mod  D )
) ) )
28 zcn 11382 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  CC )
29 exp0 12864 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
3028, 29syl 17 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A ^ 0 )  =  1 )
31 zcn 11382 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
32 exp0 12864 . . . . . . . 8  |-  ( B  e.  CC  ->  ( B ^ 0 )  =  1 )
3331, 32syl 17 . . . . . . 7  |-  ( B  e.  ZZ  ->  ( B ^ 0 )  =  1 )
3433eqcomd 2628 . . . . . 6  |-  ( B  e.  ZZ  ->  1  =  ( B ^
0 ) )
3530, 34sylan9eq 2676 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A ^ 0 )  =  ( B ^ 0 ) )
3635oveq1d 6665 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A ^
0 )  mod  D
)  =  ( ( B ^ 0 )  mod  D ) )
37363ad2ant1 1082 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) )  ->  ( ( A ^ 0 )  mod 
D )  =  ( ( B ^ 0 )  mod  D ) )
38 simp21l 1178 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  A  e.  ZZ )
39 simp1 1061 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
k  e.  NN0 )
40 zexpcl 12875 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  ZZ )
4138, 39, 40syl2anc 693 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A ^ k
)  e.  ZZ )
42 simp21r 1179 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  B  e.  ZZ )
43 zexpcl 12875 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  ZZ )
4442, 39, 43syl2anc 693 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( B ^ k
)  e.  ZZ )
45 simp22 1095 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  D  e.  RR+ )
46 simp3 1063 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
k )  mod  D
)  =  ( ( B ^ k )  mod  D ) )
47 simp23 1096 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A  mod  D
)  =  ( B  mod  D ) )
4841, 44, 38, 42, 45, 46, 47modmul12d 12724 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( ( A ^ k )  x.  A )  mod  D
)  =  ( ( ( B ^ k
)  x.  B )  mod  D ) )
4938zcnd 11483 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  A  e.  CC )
50 expp1 12867 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5149, 39, 50syl2anc 693 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5251oveq1d 6665 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( ( A ^ k
)  x.  A )  mod  D ) )
5342zcnd 11483 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  B  e.  CC )
54 expp1 12867 . . . . . . . 8  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
5553, 39, 54syl2anc 693 . . . . . . 7  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
5655oveq1d 6665 . . . . . 6  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( B ^
( k  +  1 ) )  mod  D
)  =  ( ( ( B ^ k
)  x.  B )  mod  D ) )
5748, 52, 563eqtr4d 2666 . . . . 5  |-  ( ( k  e.  NN0  /\  ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) )
58573exp 1264 . . . 4  |-  ( k  e.  NN0  ->  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) )  ->  ( ( ( A ^ k )  mod  D )  =  ( ( B ^
k )  mod  D
)  ->  ( ( A ^ ( k  +  1 ) )  mod 
D )  =  ( ( B ^ (
k  +  1 ) )  mod  D ) ) ) )
5958a2d 29 . . 3  |-  ( k  e.  NN0  ->  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A ^ (
k  +  1 ) )  mod  D )  =  ( ( B ^ ( k  +  1 ) )  mod 
D ) ) ) )
609, 15, 21, 27, 37, 59nn0ind 11472 . 2  |-  ( C  e.  NN0  ->  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  D  e.  RR+  /\  ( A  mod  D
)  =  ( B  mod  D ) )  ->  ( ( A ^ C )  mod 
D )  =  ( ( B ^ C
)  mod  D )
) )
611, 3, 60sylc 65 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( C  e. 
NN0  /\  D  e.  RR+ )  /\  ( A  mod  D )  =  ( B  mod  D
) )  ->  (
( A ^ C
)  mod  D )  =  ( ( B ^ C )  mod 
D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   NN0cn0 11292   ZZcz 11377   RR+crp 11832    mod cmo 12668   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861
This theorem is referenced by:  fermltl  15489  odzdvds  15500  lgslem4  25025  lgsmod  25048  lgsne0  25060  fmtnoprmfac1lem  41476  sfprmdvdsmersenne  41520  41prothprmlem2  41535
  Copyright terms: Public domain W3C validator