MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem8 Structured version   Visualization version   Unicode version

Theorem divalglem8 15123
Description: Lemma for divalg 15126. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem8.1  |-  N  e.  ZZ
divalglem8.2  |-  D  e.  ZZ
divalglem8.3  |-  D  =/=  0
divalglem8.4  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
Assertion
Ref Expression
divalglem8  |-  ( ( ( X  e.  S  /\  Y  e.  S
)  /\  ( X  <  ( abs `  D
)  /\  Y  <  ( abs `  D ) ) )  ->  ( K  e.  ZZ  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  X  =  Y ) ) )
Distinct variable groups:    D, r    N, r
Allowed substitution hints:    S( r)    K( r)    X( r)    Y( r)

Proof of Theorem divalglem8
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 divalglem8.4 . . . . . . . . . . . . 13  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
2 ssrab2 3687 . . . . . . . . . . . . 13  |-  { r  e.  NN0  |  D  ||  ( N  -  r
) }  C_  NN0
31, 2eqsstri 3635 . . . . . . . . . . . 12  |-  S  C_  NN0
4 nn0sscn 11297 . . . . . . . . . . . 12  |-  NN0  C_  CC
53, 4sstri 3612 . . . . . . . . . . 11  |-  S  C_  CC
65sseli 3599 . . . . . . . . . 10  |-  ( Y  e.  S  ->  Y  e.  CC )
75sseli 3599 . . . . . . . . . 10  |-  ( X  e.  S  ->  X  e.  CC )
8 divalglem8.2 . . . . . . . . . . . . . 14  |-  D  e.  ZZ
9 divalglem8.3 . . . . . . . . . . . . . 14  |-  D  =/=  0
10 nnabscl 14065 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ZZ  /\  D  =/=  0 )  -> 
( abs `  D
)  e.  NN )
118, 9, 10mp2an 708 . . . . . . . . . . . . 13  |-  ( abs `  D )  e.  NN
1211nnzi 11401 . . . . . . . . . . . 12  |-  ( abs `  D )  e.  ZZ
13 zmulcl 11426 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  ( abs `  D )  e.  ZZ )  -> 
( K  x.  ( abs `  D ) )  e.  ZZ )
1412, 13mpan2 707 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  ( K  x.  ( abs `  D ) )  e.  ZZ )
1514zcnd 11483 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( K  x.  ( abs `  D ) )  e.  CC )
16 subadd 10284 . . . . . . . . . 10  |-  ( ( Y  e.  CC  /\  X  e.  CC  /\  ( K  x.  ( abs `  D ) )  e.  CC )  ->  (
( Y  -  X
)  =  ( K  x.  ( abs `  D
) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  =  Y ) )
176, 7, 15, 16syl3an 1368 . . . . . . . . 9  |-  ( ( Y  e.  S  /\  X  e.  S  /\  K  e.  ZZ )  ->  ( ( Y  -  X )  =  ( K  x.  ( abs `  D ) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  =  Y ) )
18173com12 1269 . . . . . . . 8  |-  ( ( X  e.  S  /\  Y  e.  S  /\  K  e.  ZZ )  ->  ( ( Y  -  X )  =  ( K  x.  ( abs `  D ) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  =  Y ) )
19 eqcom 2629 . . . . . . . 8  |-  ( ( Y  -  X )  =  ( K  x.  ( abs `  D ) )  <->  ( K  x.  ( abs `  D ) )  =  ( Y  -  X ) )
20 eqcom 2629 . . . . . . . 8  |-  ( ( X  +  ( K  x.  ( abs `  D
) ) )  =  Y  <->  Y  =  ( X  +  ( K  x.  ( abs `  D
) ) ) )
2118, 19, 203bitr3g 302 . . . . . . 7  |-  ( ( X  e.  S  /\  Y  e.  S  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) ) )
22213adant1r 1319 . . . . . 6  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  Y  e.  S  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) ) )
23223adant2r 1321 . . . . 5  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) ) )
24 breq1 4656 . . . . . . . . . . . 12  |-  ( z  =  Y  ->  (
z  <  ( abs `  D )  <->  Y  <  ( abs `  D ) ) )
25 eleq1 2689 . . . . . . . . . . . 12  |-  ( z  =  Y  ->  (
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  <->  Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
2624, 25imbi12d 334 . . . . . . . . . . 11  |-  ( z  =  Y  ->  (
( z  <  ( abs `  D )  -> 
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) )  <->  ( Y  <  ( abs `  D
)  ->  Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) ) )
273sseli 3599 . . . . . . . . . . . . . . . 16  |-  ( z  e.  S  ->  z  e.  NN0 )
28 elnn0z 11390 . . . . . . . . . . . . . . . 16  |-  ( z  e.  NN0  <->  ( z  e.  ZZ  /\  0  <_ 
z ) )
2927, 28sylib 208 . . . . . . . . . . . . . . 15  |-  ( z  e.  S  ->  (
z  e.  ZZ  /\  0  <_  z ) )
3029anim1i 592 . . . . . . . . . . . . . 14  |-  ( ( z  e.  S  /\  z  <  ( abs `  D
) )  ->  (
( z  e.  ZZ  /\  0  <_  z )  /\  z  <  ( abs `  D ) ) )
31 df-3an 1039 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ZZ  /\  0  <_  z  /\  z  <  ( abs `  D
) )  <->  ( (
z  e.  ZZ  /\  0  <_  z )  /\  z  <  ( abs `  D
) ) )
3230, 31sylibr 224 . . . . . . . . . . . . 13  |-  ( ( z  e.  S  /\  z  <  ( abs `  D
) )  ->  (
z  e.  ZZ  /\  0  <_  z  /\  z  <  ( abs `  D
) ) )
33 0z 11388 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
34 elfzm11 12411 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ZZ  /\  ( abs `  D )  e.  ZZ )  -> 
( z  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  <-> 
( z  e.  ZZ  /\  0  <_  z  /\  z  <  ( abs `  D
) ) ) )
3533, 12, 34mp2an 708 . . . . . . . . . . . . 13  |-  ( z  e.  ( 0 ... ( ( abs `  D
)  -  1 ) )  <->  ( z  e.  ZZ  /\  0  <_ 
z  /\  z  <  ( abs `  D ) ) )
3632, 35sylibr 224 . . . . . . . . . . . 12  |-  ( ( z  e.  S  /\  z  <  ( abs `  D
) )  ->  z  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) )
3736ex 450 . . . . . . . . . . 11  |-  ( z  e.  S  ->  (
z  <  ( abs `  D )  ->  z  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
3826, 37vtoclga 3272 . . . . . . . . . 10  |-  ( Y  e.  S  ->  ( Y  <  ( abs `  D
)  ->  Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
39 eleq1 2689 . . . . . . . . . . 11  |-  ( Y  =  ( X  +  ( K  x.  ( abs `  D ) ) )  ->  ( Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
4039biimpd 219 . . . . . . . . . 10  |-  ( Y  =  ( X  +  ( K  x.  ( abs `  D ) ) )  ->  ( Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) )  ->  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
4138, 40sylan9 689 . . . . . . . . 9  |-  ( ( Y  e.  S  /\  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) )  -> 
( Y  <  ( abs `  D )  -> 
( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D
)  -  1 ) ) ) )
4241impancom 456 . . . . . . . 8  |-  ( ( Y  e.  S  /\  Y  <  ( abs `  D
) )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D ) ) )  ->  ( X  +  ( K  x.  ( abs `  D
) ) )  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
43423ad2ant2 1083 . . . . . . 7  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D
) ) )  -> 
( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D
)  -  1 ) ) ) )
44 breq1 4656 . . . . . . . . . . . . 13  |-  ( z  =  X  ->  (
z  <  ( abs `  D )  <->  X  <  ( abs `  D ) ) )
45 eleq1 2689 . . . . . . . . . . . . 13  |-  ( z  =  X  ->  (
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  <->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
4644, 45imbi12d 334 . . . . . . . . . . . 12  |-  ( z  =  X  ->  (
( z  <  ( abs `  D )  -> 
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) )  <->  ( X  <  ( abs `  D
)  ->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) ) )
4746, 37vtoclga 3272 . . . . . . . . . . 11  |-  ( X  e.  S  ->  ( X  <  ( abs `  D
)  ->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
4847imp 445 . . . . . . . . . 10  |-  ( ( X  e.  S  /\  X  <  ( abs `  D
) )  ->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) )
498, 9divalglem7 15122 . . . . . . . . . 10  |-  ( ( X  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  /\  K  e.  ZZ )  ->  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D
)  -  1 ) ) ) )
5048, 49sylan 488 . . . . . . . . 9  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
51503adant2 1080 . . . . . . . 8  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
5251con2d 129 . . . . . . 7  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  ->  -.  K  =/=  0 ) )
5343, 52syld 47 . . . . . 6  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D
) ) )  ->  -.  K  =/=  0
) )
54 df-ne 2795 . . . . . . 7  |-  ( K  =/=  0  <->  -.  K  =  0 )
5554con2bii 347 . . . . . 6  |-  ( K  =  0  <->  -.  K  =/=  0 )
5653, 55syl6ibr 242 . . . . 5  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D
) ) )  ->  K  =  0 ) )
5723, 56sylbid 230 . . . 4  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  K  =  0 ) )
58 oveq1 6657 . . . . . . . . . . 11  |-  ( K  =  0  ->  ( K  x.  ( abs `  D ) )  =  ( 0  x.  ( abs `  D ) ) )
5911nncni 11030 . . . . . . . . . . . 12  |-  ( abs `  D )  e.  CC
6059mul02i 10225 . . . . . . . . . . 11  |-  ( 0  x.  ( abs `  D
) )  =  0
6158, 60syl6eq 2672 . . . . . . . . . 10  |-  ( K  =  0  ->  ( K  x.  ( abs `  D ) )  =  0 )
6261eqeq1d 2624 . . . . . . . . 9  |-  ( K  =  0  ->  (
( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  0  =  ( Y  -  X
) ) )
6362biimpac 503 . . . . . . . 8  |-  ( ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  /\  K  =  0 )  -> 
0  =  ( Y  -  X ) )
64 subeq0 10307 . . . . . . . . . 10  |-  ( ( Y  e.  CC  /\  X  e.  CC )  ->  ( ( Y  -  X )  =  0  <-> 
Y  =  X ) )
656, 7, 64syl2anr 495 . . . . . . . . 9  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( ( Y  -  X )  =  0  <-> 
Y  =  X ) )
66 eqcom 2629 . . . . . . . . 9  |-  ( ( Y  -  X )  =  0  <->  0  =  ( Y  -  X
) )
67 eqcom 2629 . . . . . . . . 9  |-  ( Y  =  X  <->  X  =  Y )
6865, 66, 673bitr3g 302 . . . . . . . 8  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( 0  =  ( Y  -  X )  <-> 
X  =  Y ) )
6963, 68syl5ib 234 . . . . . . 7  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( ( ( K  x.  ( abs `  D
) )  =  ( Y  -  X )  /\  K  =  0 )  ->  X  =  Y ) )
7069ad2ant2r 783 . . . . . 6  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) ) )  ->  ( ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X
)  /\  K  = 
0 )  ->  X  =  Y ) )
71703adant3 1081 . . . . 5  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( ( K  x.  ( abs `  D
) )  =  ( Y  -  X )  /\  K  =  0 )  ->  X  =  Y ) )
7271expd 452 . . . 4  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  -> 
( K  =  0  ->  X  =  Y ) ) )
7357, 72mpdd 43 . . 3  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  X  =  Y )
)
74733expia 1267 . 2  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) ) )  ->  ( K  e.  ZZ  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X
)  ->  X  =  Y ) ) )
7574an4s 869 1  |-  ( ( ( X  e.  S  /\  Y  e.  S
)  /\  ( X  <  ( abs `  D
)  /\  Y  <  ( abs `  D ) ) )  ->  ( K  e.  ZZ  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  X  =  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ...cfz 12326   abscabs 13974    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  divalglem9  15124
  Copyright terms: Public domain W3C validator