MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsp1 Structured version   Visualization version   Unicode version

Theorem efgsp1 18150
Description: If  F is an extension sequence and  A is an extension of the last element of  F, then  F  +  <" A "> is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgsp1  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( F ++  <" A "> )  e.  dom  S )
Distinct variable groups:    y, z    t, n, v, w, y, z, m, x    m, M    x, n, M, t, v, w    k, m, t, x, T    k, n, v, w, y, z, W, m, t, x    .~ , m, t, x, y, z    m, I, n, t, v, w, x, y, z    D, m, t
Allowed substitution hints:    A( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    F( x, y, z, w, v, t, k, m, n)    I( k)    M( y, z, k)

Proof of Theorem efgsp1
Dummy variables  a 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . 8  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . . . . . . 8  |-  .~  =  ( ~FG  `  I )
3 efgval2.m . . . . . . . 8  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4 efgval2.t . . . . . . . 8  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
5 efgred.d . . . . . . . 8  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
6 efgred.s . . . . . . . 8  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
71, 2, 3, 4, 5, 6efgsdm 18143 . . . . . . 7  |-  ( F  e.  dom  S  <->  ( F  e.  (Word  W  \  { (/)
} )  /\  ( F `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  F ) ) ( F `  i )  e.  ran  ( T `
 ( F `  ( i  -  1 ) ) ) ) )
87simp1bi 1076 . . . . . 6  |-  ( F  e.  dom  S  ->  F  e.  (Word  W  \  { (/) } ) )
98adantr 481 . . . . 5  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  F  e.  (Word  W  \  { (/) } ) )
109eldifad 3586 . . . 4  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  F  e. Word  W )
111, 2, 3, 4, 5, 6efgsf 18142 . . . . . . . . . . . 12  |-  S : { t  e.  (Word 
W  \  { (/) } )  |  ( ( t `
 0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t ) ) ( t `  k )  e.  ran  ( T `
 ( t `  ( k  -  1 ) ) ) ) } --> W
1211fdmi 6052 . . . . . . . . . . . . 13  |-  dom  S  =  { t  e.  (Word 
W  \  { (/) } )  |  ( ( t `
 0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t ) ) ( t `  k )  e.  ran  ( T `
 ( t `  ( k  -  1 ) ) ) ) }
1312feq2i 6037 . . . . . . . . . . . 12  |-  ( S : dom  S --> W  <->  S : { t  e.  (Word 
W  \  { (/) } )  |  ( ( t `
 0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t ) ) ( t `  k )  e.  ran  ( T `
 ( t `  ( k  -  1 ) ) ) ) } --> W )
1411, 13mpbir 221 . . . . . . . . . . 11  |-  S : dom  S --> W
1514ffvelrni 6358 . . . . . . . . . 10  |-  ( F  e.  dom  S  -> 
( S `  F
)  e.  W )
1615adantr 481 . . . . . . . . 9  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( S `  F )  e.  W
)
171, 2, 3, 4efgtf 18135 . . . . . . . . 9  |-  ( ( S `  F )  e.  W  ->  (
( T `  ( S `  F )
)  =  ( a  e.  ( 0 ... ( # `  ( S `  F )
) ) ,  i  e.  ( I  X.  2o )  |->  ( ( S `  F ) splice  <. a ,  a , 
<" i ( M `
 i ) "> >. ) )  /\  ( T `  ( S `
 F ) ) : ( ( 0 ... ( # `  ( S `  F )
) )  X.  (
I  X.  2o ) ) --> W ) )
1816, 17syl 17 . . . . . . . 8  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( ( T `  ( S `  F ) )  =  ( a  e.  ( 0 ... ( # `  ( S `  F
) ) ) ,  i  e.  ( I  X.  2o )  |->  ( ( S `  F
) splice  <. a ,  a ,  <" i ( M `  i ) "> >. )
)  /\  ( T `  ( S `  F
) ) : ( ( 0 ... ( # `
 ( S `  F ) ) )  X.  ( I  X.  2o ) ) --> W ) )
1918simprd 479 . . . . . . 7  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( T `  ( S `  F
) ) : ( ( 0 ... ( # `
 ( S `  F ) ) )  X.  ( I  X.  2o ) ) --> W )
20 frn 6053 . . . . . . 7  |-  ( ( T `  ( S `
 F ) ) : ( ( 0 ... ( # `  ( S `  F )
) )  X.  (
I  X.  2o ) ) --> W  ->  ran  ( T `  ( S `
 F ) ) 
C_  W )
2119, 20syl 17 . . . . . 6  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ran  ( T `
 ( S `  F ) )  C_  W )
22 simpr 477 . . . . . 6  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  A  e.  ran  ( T `  ( S `  F )
) )
2321, 22sseldd 3604 . . . . 5  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  A  e.  W )
2423s1cld 13383 . . . 4  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  <" A ">  e. Word  W )
25 ccatcl 13359 . . . 4  |-  ( ( F  e. Word  W  /\  <" A ">  e. Word  W )  ->  ( F ++  <" A "> )  e. Word  W )
2610, 24, 25syl2anc 693 . . 3  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( F ++  <" A "> )  e. Word  W )
27 ccatlen 13360 . . . . . . 7  |-  ( ( F  e. Word  W  /\  <" A ">  e. Word  W )  ->  ( # `
 ( F ++  <" A "> )
)  =  ( (
# `  F )  +  ( # `  <" A "> )
) )
2810, 24, 27syl2anc 693 . . . . . 6  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( # `  ( F ++  <" A "> ) )  =  ( ( # `  F
)  +  ( # `  <" A "> ) ) )
29 s1len 13385 . . . . . . 7  |-  ( # `  <" A "> )  =  1
3029oveq2i 6661 . . . . . 6  |-  ( (
# `  F )  +  ( # `  <" A "> )
)  =  ( (
# `  F )  +  1 )
3128, 30syl6eq 2672 . . . . 5  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( # `  ( F ++  <" A "> ) )  =  ( ( # `  F
)  +  1 ) )
32 lencl 13324 . . . . . 6  |-  ( F  e. Word  W  ->  ( # `
 F )  e. 
NN0 )
33 nn0p1nn 11332 . . . . . 6  |-  ( (
# `  F )  e.  NN0  ->  ( ( # `
 F )  +  1 )  e.  NN )
3410, 32, 333syl 18 . . . . 5  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( ( # `
 F )  +  1 )  e.  NN )
3531, 34eqeltrd 2701 . . . 4  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( # `  ( F ++  <" A "> ) )  e.  NN )
36 wrdfin 13323 . . . . 5  |-  ( ( F ++  <" A "> )  e. Word  W  -> 
( F ++  <" A "> )  e.  Fin )
37 hashnncl 13157 . . . . 5  |-  ( ( F ++  <" A "> )  e.  Fin  ->  ( ( # `  ( F ++  <" A "> ) )  e.  NN  <->  ( F ++  <" A "> )  =/=  (/) ) )
3826, 36, 373syl 18 . . . 4  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( ( # `
 ( F ++  <" A "> )
)  e.  NN  <->  ( F ++  <" A "> )  =/=  (/) ) )
3935, 38mpbid 222 . . 3  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( F ++  <" A "> )  =/=  (/) )
40 eldifsn 4317 . . 3  |-  ( ( F ++  <" A "> )  e.  (Word  W  \  { (/) } )  <-> 
( ( F ++  <" A "> )  e. Word  W  /\  ( F ++ 
<" A "> )  =/=  (/) ) )
4126, 39, 40sylanbrc 698 . 2  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( F ++  <" A "> )  e.  (Word  W  \  { (/) } ) )
42 eldifsni 4320 . . . . . . 7  |-  ( F  e.  (Word  W  \  { (/) } )  ->  F  =/=  (/) )
439, 42syl 17 . . . . . 6  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  F  =/=  (/) )
44 wrdfin 13323 . . . . . . 7  |-  ( F  e. Word  W  ->  F  e.  Fin )
45 hashnncl 13157 . . . . . . 7  |-  ( F  e.  Fin  ->  (
( # `  F )  e.  NN  <->  F  =/=  (/) ) )
4610, 44, 453syl 18 . . . . . 6  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( ( # `
 F )  e.  NN  <->  F  =/=  (/) ) )
4743, 46mpbird 247 . . . . 5  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( # `  F
)  e.  NN )
48 lbfzo0 12507 . . . . 5  |-  ( 0  e.  ( 0..^ (
# `  F )
)  <->  ( # `  F
)  e.  NN )
4947, 48sylibr 224 . . . 4  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  0  e.  ( 0..^ ( # `  F
) ) )
50 ccatval1 13361 . . . 4  |-  ( ( F  e. Word  W  /\  <" A ">  e. Word  W  /\  0  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( F ++ 
<" A "> ) `  0 )  =  ( F ` 
0 ) )
5110, 24, 49, 50syl3anc 1326 . . 3  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( ( F ++  <" A "> ) `  0 )  =  ( F ` 
0 ) )
527simp2bi 1077 . . . 4  |-  ( F  e.  dom  S  -> 
( F `  0
)  e.  D )
5352adantr 481 . . 3  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( F `  0 )  e.  D )
5451, 53eqeltrd 2701 . 2  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( ( F ++  <" A "> ) `  0 )  e.  D )
557simp3bi 1078 . . . . . 6  |-  ( F  e.  dom  S  ->  A. i  e.  (
1..^ ( # `  F
) ) ( F `
 i )  e. 
ran  ( T `  ( F `  ( i  -  1 ) ) ) )
5655adantr 481 . . . . 5  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  A. i  e.  ( 1..^ ( # `  F ) ) ( F `  i )  e.  ran  ( T `
 ( F `  ( i  -  1 ) ) ) )
57 fzo0ss1 12498 . . . . . . . . . . 11  |-  ( 1..^ ( # `  F
) )  C_  (
0..^ ( # `  F
) )
5857sseli 3599 . . . . . . . . . 10  |-  ( i  e.  ( 1..^ (
# `  F )
)  ->  i  e.  ( 0..^ ( # `  F
) ) )
59 ccatval1 13361 . . . . . . . . . 10  |-  ( ( F  e. Word  W  /\  <" A ">  e. Word  W  /\  i  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( F ++ 
<" A "> ) `  i )  =  ( F `  i ) )
6058, 59syl3an3 1361 . . . . . . . . 9  |-  ( ( F  e. Word  W  /\  <" A ">  e. Word  W  /\  i  e.  ( 1..^ ( # `  F ) ) )  ->  ( ( F ++ 
<" A "> ) `  i )  =  ( F `  i ) )
61 elfzoel2 12469 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ( 1..^ (
# `  F )
)  ->  ( # `  F
)  e.  ZZ )
62 peano2zm 11420 . . . . . . . . . . . . . . . 16  |-  ( (
# `  F )  e.  ZZ  ->  ( ( # `
 F )  - 
1 )  e.  ZZ )
6361, 62syl 17 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( 1..^ (
# `  F )
)  ->  ( ( # `
 F )  - 
1 )  e.  ZZ )
6461zred 11482 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ( 1..^ (
# `  F )
)  ->  ( # `  F
)  e.  RR )
6564lem1d 10957 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( 1..^ (
# `  F )
)  ->  ( ( # `
 F )  - 
1 )  <_  ( # `
 F ) )
66 eluz2 11693 . . . . . . . . . . . . . . 15  |-  ( (
# `  F )  e.  ( ZZ>= `  ( ( # `
 F )  - 
1 ) )  <->  ( (
( # `  F )  -  1 )  e.  ZZ  /\  ( # `  F )  e.  ZZ  /\  ( ( # `  F
)  -  1 )  <_  ( # `  F
) ) )
6763, 61, 65, 66syl3anbrc 1246 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 1..^ (
# `  F )
)  ->  ( # `  F
)  e.  ( ZZ>= `  ( ( # `  F
)  -  1 ) ) )
68 fzoss2 12496 . . . . . . . . . . . . . 14  |-  ( (
# `  F )  e.  ( ZZ>= `  ( ( # `
 F )  - 
1 ) )  -> 
( 0..^ ( (
# `  F )  -  1 ) ) 
C_  ( 0..^ (
# `  F )
) )
6967, 68syl 17 . . . . . . . . . . . . 13  |-  ( i  e.  ( 1..^ (
# `  F )
)  ->  ( 0..^ ( ( # `  F
)  -  1 ) )  C_  ( 0..^ ( # `  F
) ) )
70 elfzoelz 12470 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( 1..^ (
# `  F )
)  ->  i  e.  ZZ )
71 elfzom1b 12567 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  ZZ  /\  ( # `  F )  e.  ZZ )  -> 
( i  e.  ( 1..^ ( # `  F
) )  <->  ( i  -  1 )  e.  ( 0..^ ( (
# `  F )  -  1 ) ) ) )
7270, 61, 71syl2anc 693 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 1..^ (
# `  F )
)  ->  ( i  e.  ( 1..^ ( # `  F ) )  <->  ( i  -  1 )  e.  ( 0..^ ( (
# `  F )  -  1 ) ) ) )
7372ibi 256 . . . . . . . . . . . . 13  |-  ( i  e.  ( 1..^ (
# `  F )
)  ->  ( i  -  1 )  e.  ( 0..^ ( (
# `  F )  -  1 ) ) )
7469, 73sseldd 3604 . . . . . . . . . . . 12  |-  ( i  e.  ( 1..^ (
# `  F )
)  ->  ( i  -  1 )  e.  ( 0..^ ( # `  F ) ) )
75 ccatval1 13361 . . . . . . . . . . . 12  |-  ( ( F  e. Word  W  /\  <" A ">  e. Word  W  /\  ( i  -  1 )  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( F ++ 
<" A "> ) `  ( i  -  1 ) )  =  ( F `  ( i  -  1 ) ) )
7674, 75syl3an3 1361 . . . . . . . . . . 11  |-  ( ( F  e. Word  W  /\  <" A ">  e. Word  W  /\  i  e.  ( 1..^ ( # `  F ) ) )  ->  ( ( F ++ 
<" A "> ) `  ( i  -  1 ) )  =  ( F `  ( i  -  1 ) ) )
7776fveq2d 6195 . . . . . . . . . 10  |-  ( ( F  e. Word  W  /\  <" A ">  e. Word  W  /\  i  e.  ( 1..^ ( # `  F ) ) )  ->  ( T `  ( ( F ++  <" A "> ) `  ( i  -  1 ) ) )  =  ( T `  ( F `  ( i  -  1 ) ) ) )
7877rneqd 5353 . . . . . . . . 9  |-  ( ( F  e. Word  W  /\  <" A ">  e. Word  W  /\  i  e.  ( 1..^ ( # `  F ) ) )  ->  ran  ( T `  ( ( F ++  <" A "> ) `  ( i  -  1 ) ) )  =  ran  ( T `  ( F `  ( i  -  1 ) ) ) )
7960, 78eleq12d 2695 . . . . . . . 8  |-  ( ( F  e. Word  W  /\  <" A ">  e. Word  W  /\  i  e.  ( 1..^ ( # `  F ) ) )  ->  ( ( ( F ++  <" A "> ) `  i )  e.  ran  ( T `
 ( ( F ++ 
<" A "> ) `  ( i  -  1 ) ) )  <->  ( F `  i )  e.  ran  ( T `  ( F `
 ( i  - 
1 ) ) ) ) )
80793expa 1265 . . . . . . 7  |-  ( ( ( F  e. Word  W  /\  <" A ">  e. Word  W )  /\  i  e.  ( 1..^ ( # `  F
) ) )  -> 
( ( ( F ++ 
<" A "> ) `  i )  e.  ran  ( T `  ( ( F ++  <" A "> ) `  ( i  -  1 ) ) )  <->  ( F `  i )  e.  ran  ( T `  ( F `
 ( i  - 
1 ) ) ) ) )
8180ralbidva 2985 . . . . . 6  |-  ( ( F  e. Word  W  /\  <" A ">  e. Word  W )  ->  ( A. i  e.  (
1..^ ( # `  F
) ) ( ( F ++  <" A "> ) `  i )  e.  ran  ( T `
 ( ( F ++ 
<" A "> ) `  ( i  -  1 ) ) )  <->  A. i  e.  ( 1..^ ( # `  F
) ) ( F `
 i )  e. 
ran  ( T `  ( F `  ( i  -  1 ) ) ) ) )
8210, 24, 81syl2anc 693 . . . . 5  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( A. i  e.  ( 1..^ ( # `  F
) ) ( ( F ++  <" A "> ) `  i )  e.  ran  ( T `
 ( ( F ++ 
<" A "> ) `  ( i  -  1 ) ) )  <->  A. i  e.  ( 1..^ ( # `  F
) ) ( F `
 i )  e. 
ran  ( T `  ( F `  ( i  -  1 ) ) ) ) )
8356, 82mpbird 247 . . . 4  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  A. i  e.  ( 1..^ ( # `  F ) ) ( ( F ++  <" A "> ) `  i
)  e.  ran  ( T `  ( ( F ++  <" A "> ) `  ( i  -  1 ) ) ) )
8410, 32syl 17 . . . . . . . . . 10  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( # `  F
)  e.  NN0 )
8584nn0cnd 11353 . . . . . . . . 9  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( # `  F
)  e.  CC )
8685addid2d 10237 . . . . . . . 8  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( 0  +  ( # `  F
) )  =  (
# `  F )
)
8786fveq2d 6195 . . . . . . 7  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( ( F ++  <" A "> ) `  ( 0  +  ( # `  F
) ) )  =  ( ( F ++  <" A "> ) `  ( # `  F
) ) )
88 1nn 11031 . . . . . . . . . . 11  |-  1  e.  NN
8929, 88eqeltri 2697 . . . . . . . . . 10  |-  ( # `  <" A "> )  e.  NN
9089a1i 11 . . . . . . . . 9  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( # `  <" A "> )  e.  NN )
91 lbfzo0 12507 . . . . . . . . 9  |-  ( 0  e.  ( 0..^ (
# `  <" A "> ) )  <->  ( # `  <" A "> )  e.  NN )
9290, 91sylibr 224 . . . . . . . 8  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  0  e.  ( 0..^ ( # `  <" A "> )
) )
93 ccatval3 13363 . . . . . . . 8  |-  ( ( F  e. Word  W  /\  <" A ">  e. Word  W  /\  0  e.  ( 0..^ ( # `  <" A "> ) ) )  -> 
( ( F ++  <" A "> ) `  ( 0  +  (
# `  F )
) )  =  (
<" A "> `  0 ) )
9410, 24, 92, 93syl3anc 1326 . . . . . . 7  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( ( F ++  <" A "> ) `  ( 0  +  ( # `  F
) ) )  =  ( <" A "> `  0 )
)
9587, 94eqtr3d 2658 . . . . . 6  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( ( F ++  <" A "> ) `  ( # `  F ) )  =  ( <" A "> `  0 )
)
96 s1fv 13390 . . . . . . . 8  |-  ( A  e.  ran  ( T `
 ( S `  F ) )  -> 
( <" A "> `  0 )  =  A )
9796adantl 482 . . . . . . 7  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( <" A "> `  0
)  =  A )
98 fzo0end 12560 . . . . . . . . . . . 12  |-  ( (
# `  F )  e.  NN  ->  ( ( # `
 F )  - 
1 )  e.  ( 0..^ ( # `  F
) ) )
9947, 98syl 17 . . . . . . . . . . 11  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( ( # `
 F )  - 
1 )  e.  ( 0..^ ( # `  F
) ) )
100 ccatval1 13361 . . . . . . . . . . 11  |-  ( ( F  e. Word  W  /\  <" A ">  e. Word  W  /\  ( (
# `  F )  -  1 )  e.  ( 0..^ ( # `  F ) ) )  ->  ( ( F ++ 
<" A "> ) `  ( ( # `
 F )  - 
1 ) )  =  ( F `  (
( # `  F )  -  1 ) ) )
10110, 24, 99, 100syl3anc 1326 . . . . . . . . . 10  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( ( F ++  <" A "> ) `  ( (
# `  F )  -  1 ) )  =  ( F `  ( ( # `  F
)  -  1 ) ) )
1021, 2, 3, 4, 5, 6efgsval 18144 . . . . . . . . . . 11  |-  ( F  e.  dom  S  -> 
( S `  F
)  =  ( F `
 ( ( # `  F )  -  1 ) ) )
103102adantr 481 . . . . . . . . . 10  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( S `  F )  =  ( F `  ( (
# `  F )  -  1 ) ) )
104101, 103eqtr4d 2659 . . . . . . . . 9  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( ( F ++  <" A "> ) `  ( (
# `  F )  -  1 ) )  =  ( S `  F ) )
105104fveq2d 6195 . . . . . . . 8  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( T `  ( ( F ++  <" A "> ) `  ( ( # `  F
)  -  1 ) ) )  =  ( T `  ( S `
 F ) ) )
106105rneqd 5353 . . . . . . 7  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ran  ( T `
 ( ( F ++ 
<" A "> ) `  ( ( # `
 F )  - 
1 ) ) )  =  ran  ( T `
 ( S `  F ) ) )
10722, 97, 1063eltr4d 2716 . . . . . 6  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( <" A "> `  0
)  e.  ran  ( T `  ( ( F ++  <" A "> ) `  ( (
# `  F )  -  1 ) ) ) )
10895, 107eqeltrd 2701 . . . . 5  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( ( F ++  <" A "> ) `  ( # `  F ) )  e. 
ran  ( T `  ( ( F ++  <" A "> ) `  ( ( # `  F
)  -  1 ) ) ) )
109 fvex 6201 . . . . . 6  |-  ( # `  F )  e.  _V
110 fveq2 6191 . . . . . . 7  |-  ( i  =  ( # `  F
)  ->  ( ( F ++  <" A "> ) `  i )  =  ( ( F ++ 
<" A "> ) `  ( # `  F
) ) )
111 oveq1 6657 . . . . . . . . . 10  |-  ( i  =  ( # `  F
)  ->  ( i  -  1 )  =  ( ( # `  F
)  -  1 ) )
112111fveq2d 6195 . . . . . . . . 9  |-  ( i  =  ( # `  F
)  ->  ( ( F ++  <" A "> ) `  ( i  -  1 ) )  =  ( ( F ++ 
<" A "> ) `  ( ( # `
 F )  - 
1 ) ) )
113112fveq2d 6195 . . . . . . . 8  |-  ( i  =  ( # `  F
)  ->  ( T `  ( ( F ++  <" A "> ) `  ( i  -  1 ) ) )  =  ( T `  (
( F ++  <" A "> ) `  (
( # `  F )  -  1 ) ) ) )
114113rneqd 5353 . . . . . . 7  |-  ( i  =  ( # `  F
)  ->  ran  ( T `
 ( ( F ++ 
<" A "> ) `  ( i  -  1 ) ) )  =  ran  ( T `  ( ( F ++  <" A "> ) `  ( (
# `  F )  -  1 ) ) ) )
115110, 114eleq12d 2695 . . . . . 6  |-  ( i  =  ( # `  F
)  ->  ( (
( F ++  <" A "> ) `  i
)  e.  ran  ( T `  ( ( F ++  <" A "> ) `  ( i  -  1 ) ) )  <->  ( ( F ++ 
<" A "> ) `  ( # `  F
) )  e.  ran  ( T `  ( ( F ++  <" A "> ) `  ( (
# `  F )  -  1 ) ) ) ) )
116109, 115ralsn 4222 . . . . 5  |-  ( A. i  e.  { ( # `
 F ) }  ( ( F ++  <" A "> ) `  i )  e.  ran  ( T `  ( ( F ++  <" A "> ) `  ( i  -  1 ) ) )  <->  ( ( F ++ 
<" A "> ) `  ( # `  F
) )  e.  ran  ( T `  ( ( F ++  <" A "> ) `  ( (
# `  F )  -  1 ) ) ) )
117108, 116sylibr 224 . . . 4  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  A. i  e.  { ( # `  F
) }  ( ( F ++  <" A "> ) `  i )  e.  ran  ( T `
 ( ( F ++ 
<" A "> ) `  ( i  -  1 ) ) ) )
118 ralunb 3794 . . . 4  |-  ( A. i  e.  ( (
1..^ ( # `  F
) )  u.  {
( # `  F ) } ) ( ( F ++  <" A "> ) `  i )  e.  ran  ( T `
 ( ( F ++ 
<" A "> ) `  ( i  -  1 ) ) )  <->  ( A. i  e.  ( 1..^ ( # `  F ) ) ( ( F ++  <" A "> ) `  i
)  e.  ran  ( T `  ( ( F ++  <" A "> ) `  ( i  -  1 ) ) )  /\  A. i  e.  { ( # `  F
) }  ( ( F ++  <" A "> ) `  i )  e.  ran  ( T `
 ( ( F ++ 
<" A "> ) `  ( i  -  1 ) ) ) ) )
11983, 117, 118sylanbrc 698 . . 3  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  A. i  e.  ( ( 1..^ (
# `  F )
)  u.  { (
# `  F ) } ) ( ( F ++  <" A "> ) `  i )  e.  ran  ( T `
 ( ( F ++ 
<" A "> ) `  ( i  -  1 ) ) ) )
12031oveq2d 6666 . . . . 5  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( 1..^ ( # `  ( F ++  <" A "> ) ) )  =  ( 1..^ ( (
# `  F )  +  1 ) ) )
121 nnuz 11723 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
12247, 121syl6eleq 2711 . . . . . 6  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( # `  F
)  e.  ( ZZ>= ` 
1 ) )
123 fzosplitsn 12576 . . . . . 6  |-  ( (
# `  F )  e.  ( ZZ>= `  1 )  ->  ( 1..^ ( (
# `  F )  +  1 ) )  =  ( ( 1..^ ( # `  F
) )  u.  {
( # `  F ) } ) )
124122, 123syl 17 . . . . 5  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( 1..^ ( ( # `  F
)  +  1 ) )  =  ( ( 1..^ ( # `  F
) )  u.  {
( # `  F ) } ) )
125120, 124eqtrd 2656 . . . 4  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( 1..^ ( # `  ( F ++  <" A "> ) ) )  =  ( ( 1..^ (
# `  F )
)  u.  { (
# `  F ) } ) )
126125raleqdv 3144 . . 3  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( A. i  e.  ( 1..^ ( # `  ( F ++  <" A "> ) ) ) ( ( F ++  <" A "> ) `  i
)  e.  ran  ( T `  ( ( F ++  <" A "> ) `  ( i  -  1 ) ) )  <->  A. i  e.  ( ( 1..^ ( # `  F ) )  u. 
{ ( # `  F
) } ) ( ( F ++  <" A "> ) `  i
)  e.  ran  ( T `  ( ( F ++  <" A "> ) `  ( i  -  1 ) ) ) ) )
127119, 126mpbird 247 . 2  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  A. i  e.  ( 1..^ ( # `  ( F ++  <" A "> ) ) ) ( ( F ++  <" A "> ) `  i )  e.  ran  ( T `  ( ( F ++  <" A "> ) `  ( i  -  1 ) ) ) )
1281, 2, 3, 4, 5, 6efgsdm 18143 . 2  |-  ( ( F ++  <" A "> )  e.  dom  S  <-> 
( ( F ++  <" A "> )  e.  (Word  W  \  { (/)
} )  /\  (
( F ++  <" A "> ) `  0
)  e.  D  /\  A. i  e.  ( 1..^ ( # `  ( F ++  <" A "> ) ) ) ( ( F ++  <" A "> ) `  i
)  e.  ran  ( T `  ( ( F ++  <" A "> ) `  ( i  -  1 ) ) ) ) )
12941, 54, 127, 128syl3anbrc 1246 1  |-  ( ( F  e.  dom  S  /\  A  e.  ran  ( T `  ( S `
 F ) ) )  ->  ( F ++  <" A "> )  e.  dom  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   <.cotp 4185   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112   dom cdm 5114   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   <"cs1 13294   splice csplice 13296   <"cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593
This theorem is referenced by:  efgsfo  18152  efgredlemd  18157  efgrelexlemb  18163
  Copyright terms: Public domain W3C validator