MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsres Structured version   Visualization version   Unicode version

Theorem efgsres 18151
Description: An initial segment of an extension sequence is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
Assertion
Ref Expression
efgsres  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( F  |`  (
0..^ N ) )  e.  dom  S )
Distinct variable groups:    y, z    t, n, v, w, y, z, m, x    m, M    x, n, M, t, v, w    k, m, t, x, T    k, n, v, w, y, z, W, m, t, x    .~ , m, t, x, y, z    m, I, n, t, v, w, x, y, z    D, m, t
Allowed substitution hints:    D( x, y, z, w, v, k, n)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y,
z, w, v, n)    F( x, y, z, w, v, t, k, m, n)    I( k)    M( y, z, k)    N( x, y, z, w, v, t, k, m, n)

Proof of Theorem efgsres
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . . 9  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . . . . . . . 9  |-  .~  =  ( ~FG  `  I )
3 efgval2.m . . . . . . . . 9  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4 efgval2.t . . . . . . . . 9  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
5 efgred.d . . . . . . . . 9  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
6 efgred.s . . . . . . . . 9  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
71, 2, 3, 4, 5, 6efgsdm 18143 . . . . . . . 8  |-  ( F  e.  dom  S  <->  ( F  e.  (Word  W  \  { (/)
} )  /\  ( F `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  F ) ) ( F `  i )  e.  ran  ( T `
 ( F `  ( i  -  1 ) ) ) ) )
87simp1bi 1076 . . . . . . 7  |-  ( F  e.  dom  S  ->  F  e.  (Word  W  \  { (/) } ) )
98adantr 481 . . . . . 6  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  ->  F  e.  (Word  W  \  { (/) } ) )
109eldifad 3586 . . . . 5  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  ->  F  e. Word  W )
11 1eluzge0 11732 . . . . . . 7  |-  1  e.  ( ZZ>= `  0 )
12 fzss1 12380 . . . . . . 7  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... ( # `  F
) )  C_  (
0 ... ( # `  F
) ) )
1311, 12ax-mp 5 . . . . . 6  |-  ( 1 ... ( # `  F
) )  C_  (
0 ... ( # `  F
) )
14 simpr 477 . . . . . 6  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  ->  N  e.  ( 1 ... ( # `  F
) ) )
1513, 14sseldi 3601 . . . . 5  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  ->  N  e.  ( 0 ... ( # `  F
) ) )
16 swrd0val 13421 . . . . 5  |-  ( ( F  e. Word  W  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( F substr  <. 0 ,  N >. )  =  ( F  |`  ( 0..^ N ) ) )
1710, 15, 16syl2anc 693 . . . 4  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( F substr  <. 0 ,  N >. )  =  ( F  |`  ( 0..^ N ) ) )
18 swrdcl 13419 . . . . 5  |-  ( F  e. Word  W  ->  ( F substr  <. 0 ,  N >. )  e. Word  W )
1910, 18syl 17 . . . 4  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( F substr  <. 0 ,  N >. )  e. Word  W
)
2017, 19eqeltrrd 2702 . . 3  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( F  |`  (
0..^ N ) )  e. Word  W )
21 swrd0len 13422 . . . . . . 7  |-  ( ( F  e. Word  W  /\  N  e.  ( 0 ... ( # `  F
) ) )  -> 
( # `  ( F substr  <. 0 ,  N >. ) )  =  N )
2210, 15, 21syl2anc 693 . . . . . 6  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( # `  ( F substr  <. 0 ,  N >. ) )  =  N )
23 elfznn 12370 . . . . . . 7  |-  ( N  e.  ( 1 ... ( # `  F
) )  ->  N  e.  NN )
2423adantl 482 . . . . . 6  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  ->  N  e.  NN )
2522, 24eqeltrd 2701 . . . . 5  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( # `  ( F substr  <. 0 ,  N >. ) )  e.  NN )
26 wrdfin 13323 . . . . . 6  |-  ( ( F substr  <. 0 ,  N >. )  e. Word  W  -> 
( F substr  <. 0 ,  N >. )  e.  Fin )
27 hashnncl 13157 . . . . . 6  |-  ( ( F substr  <. 0 ,  N >. )  e.  Fin  ->  ( ( # `  ( F substr  <. 0 ,  N >. ) )  e.  NN  <->  ( F substr  <. 0 ,  N >. )  =/=  (/) ) )
2819, 26, 273syl 18 . . . . 5  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( ( # `  ( F substr  <. 0 ,  N >. ) )  e.  NN  <->  ( F substr  <. 0 ,  N >. )  =/=  (/) ) )
2925, 28mpbid 222 . . . 4  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( F substr  <. 0 ,  N >. )  =/=  (/) )
3017, 29eqnetrrd 2862 . . 3  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( F  |`  (
0..^ N ) )  =/=  (/) )
31 eldifsn 4317 . . 3  |-  ( ( F  |`  ( 0..^ N ) )  e.  (Word  W  \  { (/)
} )  <->  ( ( F  |`  ( 0..^ N ) )  e. Word  W  /\  ( F  |`  (
0..^ N ) )  =/=  (/) ) )
3220, 30, 31sylanbrc 698 . 2  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( F  |`  (
0..^ N ) )  e.  (Word  W  \  { (/) } ) )
33 lbfzo0 12507 . . . . 5  |-  ( 0  e.  ( 0..^ N )  <->  N  e.  NN )
3424, 33sylibr 224 . . . 4  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
0  e.  ( 0..^ N ) )
35 fvres 6207 . . . 4  |-  ( 0  e.  ( 0..^ N )  ->  ( ( F  |`  ( 0..^ N ) ) `  0
)  =  ( F `
 0 ) )
3634, 35syl 17 . . 3  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( ( F  |`  ( 0..^ N ) ) `
 0 )  =  ( F `  0
) )
377simp2bi 1077 . . . 4  |-  ( F  e.  dom  S  -> 
( F `  0
)  e.  D )
3837adantr 481 . . 3  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( F `  0
)  e.  D )
3936, 38eqeltrd 2701 . 2  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( ( F  |`  ( 0..^ N ) ) `
 0 )  e.  D )
40 elfzuz3 12339 . . . . . . 7  |-  ( N  e.  ( 1 ... ( # `  F
) )  ->  ( # `
 F )  e.  ( ZZ>= `  N )
)
4140adantl 482 . . . . . 6  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( # `  F )  e.  ( ZZ>= `  N
) )
42 fzoss2 12496 . . . . . 6  |-  ( (
# `  F )  e.  ( ZZ>= `  N )  ->  ( 1..^ N ) 
C_  ( 1..^ (
# `  F )
) )
4341, 42syl 17 . . . . 5  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( 1..^ N ) 
C_  ( 1..^ (
# `  F )
) )
447simp3bi 1078 . . . . . 6  |-  ( F  e.  dom  S  ->  A. i  e.  (
1..^ ( # `  F
) ) ( F `
 i )  e. 
ran  ( T `  ( F `  ( i  -  1 ) ) ) )
4544adantr 481 . . . . 5  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  ->  A. i  e.  (
1..^ ( # `  F
) ) ( F `
 i )  e. 
ran  ( T `  ( F `  ( i  -  1 ) ) ) )
46 ssralv 3666 . . . . 5  |-  ( ( 1..^ N )  C_  ( 1..^ ( # `  F
) )  ->  ( A. i  e.  (
1..^ ( # `  F
) ) ( F `
 i )  e. 
ran  ( T `  ( F `  ( i  -  1 ) ) )  ->  A. i  e.  ( 1..^ N ) ( F `  i
)  e.  ran  ( T `  ( F `  ( i  -  1 ) ) ) ) )
4743, 45, 46sylc 65 . . . 4  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  ->  A. i  e.  (
1..^ N ) ( F `  i )  e.  ran  ( T `
 ( F `  ( i  -  1 ) ) ) )
48 fzo0ss1 12498 . . . . . . . 8  |-  ( 1..^ N )  C_  (
0..^ N )
4948sseli 3599 . . . . . . 7  |-  ( i  e.  ( 1..^ N )  ->  i  e.  ( 0..^ N ) )
50 fvres 6207 . . . . . . 7  |-  ( i  e.  ( 0..^ N )  ->  ( ( F  |`  ( 0..^ N ) ) `  i
)  =  ( F `
 i ) )
5149, 50syl 17 . . . . . 6  |-  ( i  e.  ( 1..^ N )  ->  ( ( F  |`  ( 0..^ N ) ) `  i
)  =  ( F `
 i ) )
52 elfzoel2 12469 . . . . . . . . . . . . 13  |-  ( i  e.  ( 1..^ N )  ->  N  e.  ZZ )
53 peano2zm 11420 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
5452, 53syl 17 . . . . . . . . . . . 12  |-  ( i  e.  ( 1..^ N )  ->  ( N  -  1 )  e.  ZZ )
55 uzid 11702 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
5652, 55syl 17 . . . . . . . . . . . . 13  |-  ( i  e.  ( 1..^ N )  ->  N  e.  ( ZZ>= `  N )
)
5752zcnd 11483 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( 1..^ N )  ->  N  e.  CC )
58 ax-1cn 9994 . . . . . . . . . . . . . . 15  |-  1  e.  CC
59 npcan 10290 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
6057, 58, 59sylancl 694 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 1..^ N )  ->  ( ( N  -  1 )  +  1 )  =  N )
6160fveq2d 6195 . . . . . . . . . . . . 13  |-  ( i  e.  ( 1..^ N )  ->  ( ZZ>= `  ( ( N  - 
1 )  +  1 ) )  =  (
ZZ>= `  N ) )
6256, 61eleqtrrd 2704 . . . . . . . . . . . 12  |-  ( i  e.  ( 1..^ N )  ->  N  e.  ( ZZ>= `  ( ( N  -  1 )  +  1 ) ) )
63 peano2uzr 11743 . . . . . . . . . . . 12  |-  ( ( ( N  -  1 )  e.  ZZ  /\  N  e.  ( ZZ>= `  ( ( N  - 
1 )  +  1 ) ) )  ->  N  e.  ( ZZ>= `  ( N  -  1
) ) )
6454, 62, 63syl2anc 693 . . . . . . . . . . 11  |-  ( i  e.  ( 1..^ N )  ->  N  e.  ( ZZ>= `  ( N  -  1 ) ) )
65 fzoss2 12496 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( 0..^ ( N  -  1 ) )  C_  (
0..^ N ) )
6664, 65syl 17 . . . . . . . . . 10  |-  ( i  e.  ( 1..^ N )  ->  ( 0..^ ( N  -  1 ) )  C_  (
0..^ N ) )
67 elfzoelz 12470 . . . . . . . . . . . 12  |-  ( i  e.  ( 1..^ N )  ->  i  e.  ZZ )
68 elfzom1b 12567 . . . . . . . . . . . 12  |-  ( ( i  e.  ZZ  /\  N  e.  ZZ )  ->  ( i  e.  ( 1..^ N )  <->  ( i  -  1 )  e.  ( 0..^ ( N  -  1 ) ) ) )
6967, 52, 68syl2anc 693 . . . . . . . . . . 11  |-  ( i  e.  ( 1..^ N )  ->  ( i  e.  ( 1..^ N )  <-> 
( i  -  1 )  e.  ( 0..^ ( N  -  1 ) ) ) )
7069ibi 256 . . . . . . . . . 10  |-  ( i  e.  ( 1..^ N )  ->  ( i  -  1 )  e.  ( 0..^ ( N  -  1 ) ) )
7166, 70sseldd 3604 . . . . . . . . 9  |-  ( i  e.  ( 1..^ N )  ->  ( i  -  1 )  e.  ( 0..^ N ) )
72 fvres 6207 . . . . . . . . 9  |-  ( ( i  -  1 )  e.  ( 0..^ N )  ->  ( ( F  |`  ( 0..^ N ) ) `  (
i  -  1 ) )  =  ( F `
 ( i  - 
1 ) ) )
7371, 72syl 17 . . . . . . . 8  |-  ( i  e.  ( 1..^ N )  ->  ( ( F  |`  ( 0..^ N ) ) `  (
i  -  1 ) )  =  ( F `
 ( i  - 
1 ) ) )
7473fveq2d 6195 . . . . . . 7  |-  ( i  e.  ( 1..^ N )  ->  ( T `  ( ( F  |`  ( 0..^ N ) ) `
 ( i  - 
1 ) ) )  =  ( T `  ( F `  ( i  -  1 ) ) ) )
7574rneqd 5353 . . . . . 6  |-  ( i  e.  ( 1..^ N )  ->  ran  ( T `
 ( ( F  |`  ( 0..^ N ) ) `  ( i  -  1 ) ) )  =  ran  ( T `  ( F `  ( i  -  1 ) ) ) )
7651, 75eleq12d 2695 . . . . 5  |-  ( i  e.  ( 1..^ N )  ->  ( (
( F  |`  (
0..^ N ) ) `
 i )  e. 
ran  ( T `  ( ( F  |`  ( 0..^ N ) ) `
 ( i  - 
1 ) ) )  <-> 
( F `  i
)  e.  ran  ( T `  ( F `  ( i  -  1 ) ) ) ) )
7776ralbiia 2979 . . . 4  |-  ( A. i  e.  ( 1..^ N ) ( ( F  |`  ( 0..^ N ) ) `  i )  e.  ran  ( T `  ( ( F  |`  ( 0..^ N ) ) `  ( i  -  1 ) ) )  <->  A. i  e.  ( 1..^ N ) ( F `  i
)  e.  ran  ( T `  ( F `  ( i  -  1 ) ) ) )
7847, 77sylibr 224 . . 3  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  ->  A. i  e.  (
1..^ N ) ( ( F  |`  (
0..^ N ) ) `
 i )  e. 
ran  ( T `  ( ( F  |`  ( 0..^ N ) ) `
 ( i  - 
1 ) ) ) )
7917fveq2d 6195 . . . . . 6  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( # `  ( F substr  <. 0 ,  N >. ) )  =  ( # `  ( F  |`  (
0..^ N ) ) ) )
8079, 22eqtr3d 2658 . . . . 5  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( # `  ( F  |`  ( 0..^ N ) ) )  =  N )
8180oveq2d 6666 . . . 4  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( 1..^ ( # `  ( F  |`  (
0..^ N ) ) ) )  =  ( 1..^ N ) )
8281raleqdv 3144 . . 3  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( A. i  e.  ( 1..^ ( # `  ( F  |`  (
0..^ N ) ) ) ) ( ( F  |`  ( 0..^ N ) ) `  i )  e.  ran  ( T `  ( ( F  |`  ( 0..^ N ) ) `  ( i  -  1 ) ) )  <->  A. i  e.  ( 1..^ N ) ( ( F  |`  ( 0..^ N ) ) `
 i )  e. 
ran  ( T `  ( ( F  |`  ( 0..^ N ) ) `
 ( i  - 
1 ) ) ) ) )
8378, 82mpbird 247 . 2  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  ->  A. i  e.  (
1..^ ( # `  ( F  |`  ( 0..^ N ) ) ) ) ( ( F  |`  ( 0..^ N ) ) `
 i )  e. 
ran  ( T `  ( ( F  |`  ( 0..^ N ) ) `
 ( i  - 
1 ) ) ) )
841, 2, 3, 4, 5, 6efgsdm 18143 . 2  |-  ( ( F  |`  ( 0..^ N ) )  e. 
dom  S  <->  ( ( F  |`  ( 0..^ N ) )  e.  (Word  W  \  { (/) } )  /\  ( ( F  |`  ( 0..^ N ) ) `
 0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  ( F  |`  (
0..^ N ) ) ) ) ( ( F  |`  ( 0..^ N ) ) `  i )  e.  ran  ( T `  ( ( F  |`  ( 0..^ N ) ) `  ( i  -  1 ) ) ) ) )
8532, 39, 83, 84syl3anbrc 1246 1  |-  ( ( F  e.  dom  S  /\  N  e.  (
1 ... ( # `  F
) ) )  -> 
( F  |`  (
0..^ N ) )  e.  dom  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   <.cotp 4185   U_ciun 4520    |-> cmpt 4729    _I cid 5023    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   substr csubstr 13295   splice csplice 13296   <"cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-substr 13303
This theorem is referenced by:  efgredlemd  18157  efgredlem  18160
  Copyright terms: Public domain W3C validator