Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze2lem1 Structured version   Visualization version   Unicode version

Theorem erdsze2lem1 31185
Description: Lemma for erdsze2 31187. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze2.r  |-  ( ph  ->  R  e.  NN )
erdsze2.s  |-  ( ph  ->  S  e.  NN )
erdsze2.f  |-  ( ph  ->  F : A -1-1-> RR )
erdsze2.a  |-  ( ph  ->  A  C_  RR )
erdsze2lem.n  |-  N  =  ( ( R  - 
1 )  x.  ( S  -  1 ) )
erdsze2lem.l  |-  ( ph  ->  N  <  ( # `  A ) )
Assertion
Ref Expression
erdsze2lem1  |-  ( ph  ->  E. f ( f : ( 1 ... ( N  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... ( N  +  1 ) ) ,  ran  f
) ) )
Distinct variable groups:    A, f    f, F    R, f    S, f   
f, N    ph, f

Proof of Theorem erdsze2lem1
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 erdsze2lem.n . . . . . . . . 9  |-  N  =  ( ( R  - 
1 )  x.  ( S  -  1 ) )
2 erdsze2.r . . . . . . . . . . 11  |-  ( ph  ->  R  e.  NN )
3 nnm1nn0 11334 . . . . . . . . . . 11  |-  ( R  e.  NN  ->  ( R  -  1 )  e.  NN0 )
42, 3syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( R  -  1 )  e.  NN0 )
5 erdsze2.s . . . . . . . . . . 11  |-  ( ph  ->  S  e.  NN )
6 nnm1nn0 11334 . . . . . . . . . . 11  |-  ( S  e.  NN  ->  ( S  -  1 )  e.  NN0 )
75, 6syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( S  -  1 )  e.  NN0 )
84, 7nn0mulcld 11356 . . . . . . . . 9  |-  ( ph  ->  ( ( R  - 
1 )  x.  ( S  -  1 ) )  e.  NN0 )
91, 8syl5eqel 2705 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
10 peano2nn0 11333 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
11 hashfz1 13134 . . . . . . . 8  |-  ( ( N  +  1 )  e.  NN0  ->  ( # `  ( 1 ... ( N  +  1 ) ) )  =  ( N  +  1 ) )
129, 10, 113syl 18 . . . . . . 7  |-  ( ph  ->  ( # `  (
1 ... ( N  + 
1 ) ) )  =  ( N  + 
1 ) )
1312adantr 481 . . . . . 6  |-  ( (
ph  /\  A  e.  Fin )  ->  ( # `  ( 1 ... ( N  +  1 ) ) )  =  ( N  +  1 ) )
14 erdsze2lem.l . . . . . . . 8  |-  ( ph  ->  N  <  ( # `  A ) )
1514adantr 481 . . . . . . 7  |-  ( (
ph  /\  A  e.  Fin )  ->  N  < 
( # `  A ) )
16 hashcl 13147 . . . . . . . 8  |-  ( A  e.  Fin  ->  ( # `
 A )  e. 
NN0 )
17 nn0ltp1le 11435 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( # `  A )  e.  NN0 )  -> 
( N  <  ( # `
 A )  <->  ( N  +  1 )  <_ 
( # `  A ) ) )
189, 16, 17syl2an 494 . . . . . . 7  |-  ( (
ph  /\  A  e.  Fin )  ->  ( N  <  ( # `  A
)  <->  ( N  + 
1 )  <_  ( # `
 A ) ) )
1915, 18mpbid 222 . . . . . 6  |-  ( (
ph  /\  A  e.  Fin )  ->  ( N  +  1 )  <_ 
( # `  A ) )
2013, 19eqbrtrd 4675 . . . . 5  |-  ( (
ph  /\  A  e.  Fin )  ->  ( # `  ( 1 ... ( N  +  1 ) ) )  <_  ( # `
 A ) )
21 fzfid 12772 . . . . . 6  |-  ( (
ph  /\  A  e.  Fin )  ->  ( 1 ... ( N  + 
1 ) )  e. 
Fin )
22 simpr 477 . . . . . 6  |-  ( (
ph  /\  A  e.  Fin )  ->  A  e. 
Fin )
23 hashdom 13168 . . . . . 6  |-  ( ( ( 1 ... ( N  +  1 ) )  e.  Fin  /\  A  e.  Fin )  ->  ( ( # `  (
1 ... ( N  + 
1 ) ) )  <_  ( # `  A
)  <->  ( 1 ... ( N  +  1 ) )  ~<_  A ) )
2421, 22, 23syl2anc 693 . . . . 5  |-  ( (
ph  /\  A  e.  Fin )  ->  ( (
# `  ( 1 ... ( N  +  1 ) ) )  <_ 
( # `  A )  <-> 
( 1 ... ( N  +  1 ) )  ~<_  A ) )
2520, 24mpbid 222 . . . 4  |-  ( (
ph  /\  A  e.  Fin )  ->  ( 1 ... ( N  + 
1 ) )  ~<_  A )
26 simpr 477 . . . . . 6  |-  ( (
ph  /\  -.  A  e.  Fin )  ->  -.  A  e.  Fin )
27 fzfid 12772 . . . . . 6  |-  ( (
ph  /\  -.  A  e.  Fin )  ->  (
1 ... ( N  + 
1 ) )  e. 
Fin )
28 isinffi 8818 . . . . . 6  |-  ( ( -.  A  e.  Fin  /\  ( 1 ... ( N  +  1 ) )  e.  Fin )  ->  E. f  f : ( 1 ... ( N  +  1 ) ) -1-1-> A )
2926, 27, 28syl2anc 693 . . . . 5  |-  ( (
ph  /\  -.  A  e.  Fin )  ->  E. f 
f : ( 1 ... ( N  + 
1 ) ) -1-1-> A
)
30 erdsze2.a . . . . . . . 8  |-  ( ph  ->  A  C_  RR )
31 reex 10027 . . . . . . . 8  |-  RR  e.  _V
32 ssexg 4804 . . . . . . . 8  |-  ( ( A  C_  RR  /\  RR  e.  _V )  ->  A  e.  _V )
3330, 31, 32sylancl 694 . . . . . . 7  |-  ( ph  ->  A  e.  _V )
3433adantr 481 . . . . . 6  |-  ( (
ph  /\  -.  A  e.  Fin )  ->  A  e.  _V )
35 brdomg 7965 . . . . . 6  |-  ( A  e.  _V  ->  (
( 1 ... ( N  +  1 ) )  ~<_  A  <->  E. f 
f : ( 1 ... ( N  + 
1 ) ) -1-1-> A
) )
3634, 35syl 17 . . . . 5  |-  ( (
ph  /\  -.  A  e.  Fin )  ->  (
( 1 ... ( N  +  1 ) )  ~<_  A  <->  E. f 
f : ( 1 ... ( N  + 
1 ) ) -1-1-> A
) )
3729, 36mpbird 247 . . . 4  |-  ( (
ph  /\  -.  A  e.  Fin )  ->  (
1 ... ( N  + 
1 ) )  ~<_  A )
3825, 37pm2.61dan 832 . . 3  |-  ( ph  ->  ( 1 ... ( N  +  1 ) )  ~<_  A )
39 domeng 7969 . . . 4  |-  ( A  e.  _V  ->  (
( 1 ... ( N  +  1 ) )  ~<_  A  <->  E. s
( ( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) ) )
4033, 39syl 17 . . 3  |-  ( ph  ->  ( ( 1 ... ( N  +  1 ) )  ~<_  A  <->  E. s
( ( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) ) )
4138, 40mpbid 222 . 2  |-  ( ph  ->  E. s ( ( 1 ... ( N  +  1 ) ) 
~~  s  /\  s  C_  A ) )
42 simprr 796 . . . . . 6  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  s  C_  A )
4330adantr 481 . . . . . 6  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  A  C_  RR )
4442, 43sstrd 3613 . . . . 5  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  s  C_  RR )
45 ltso 10118 . . . . 5  |-  <  Or  RR
46 soss 5053 . . . . 5  |-  ( s 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  s ) )
4744, 45, 46mpisyl 21 . . . 4  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  <  Or  s )
48 fzfid 12772 . . . . 5  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  (
1 ... ( N  + 
1 ) )  e. 
Fin )
49 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  (
1 ... ( N  + 
1 ) )  ~~  s )
50 enfi 8176 . . . . . 6  |-  ( ( 1 ... ( N  +  1 ) ) 
~~  s  ->  (
( 1 ... ( N  +  1 ) )  e.  Fin  <->  s  e.  Fin ) )
5149, 50syl 17 . . . . 5  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  (
( 1 ... ( N  +  1 ) )  e.  Fin  <->  s  e.  Fin ) )
5248, 51mpbid 222 . . . 4  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  s  e.  Fin )
53 fz1iso 13246 . . . 4  |-  ( (  <  Or  s  /\  s  e.  Fin )  ->  E. f  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )
5447, 52, 53syl2anc 693 . . 3  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  E. f 
f  Isom  <  ,  <  ( ( 1 ... ( # `
 s ) ) ,  s ) )
55 isof1o 6573 . . . . . . . . . 10  |-  ( f 
Isom  <  ,  <  (
( 1 ... ( # `
 s ) ) ,  s )  -> 
f : ( 1 ... ( # `  s
) ) -1-1-onto-> s )
5655adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  f : ( 1 ... ( # `  s
) ) -1-1-onto-> s )
57 hashen 13135 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... ( N  +  1 ) )  e.  Fin  /\  s  e.  Fin )  ->  ( ( # `  (
1 ... ( N  + 
1 ) ) )  =  ( # `  s
)  <->  ( 1 ... ( N  +  1 ) )  ~~  s
) )
5848, 52, 57syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  (
( # `  ( 1 ... ( N  + 
1 ) ) )  =  ( # `  s
)  <->  ( 1 ... ( N  +  1 ) )  ~~  s
) )
5949, 58mpbird 247 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  ( # `
 ( 1 ... ( N  +  1 ) ) )  =  ( # `  s
) )
6012adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  ( # `
 ( 1 ... ( N  +  1 ) ) )  =  ( N  +  1 ) )
6159, 60eqtr3d 2658 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  ( # `
 s )  =  ( N  +  1 ) )
6261adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  ( # `
 s )  =  ( N  +  1 ) )
6362oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  (
1 ... ( # `  s
) )  =  ( 1 ... ( N  +  1 ) ) )
64 f1oeq2 6128 . . . . . . . . . 10  |-  ( ( 1 ... ( # `  s ) )  =  ( 1 ... ( N  +  1 ) )  ->  ( f : ( 1 ... ( # `  s
) ) -1-1-onto-> s  <->  f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> s ) )
6563, 64syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  (
f : ( 1 ... ( # `  s
) ) -1-1-onto-> s  <->  f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> s ) )
6656, 65mpbid 222 . . . . . . . 8  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> s )
67 f1of1 6136 . . . . . . . 8  |-  ( f : ( 1 ... ( N  +  1 ) ) -1-1-onto-> s  ->  f : ( 1 ... ( N  +  1 ) ) -1-1-> s )
6866, 67syl 17 . . . . . . 7  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  f : ( 1 ... ( N  +  1 ) ) -1-1-> s )
69 simplrr 801 . . . . . . 7  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  s  C_  A )
70 f1ss 6106 . . . . . . 7  |-  ( ( f : ( 1 ... ( N  + 
1 ) ) -1-1-> s  /\  s  C_  A
)  ->  f :
( 1 ... ( N  +  1 ) ) -1-1-> A )
7168, 69, 70syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  f : ( 1 ... ( N  +  1 ) ) -1-1-> A )
72 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  f  Isom  <  ,  <  (
( 1 ... ( # `
 s ) ) ,  s ) )
73 f1ofo 6144 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  s
) ) -1-1-onto-> s  ->  f : ( 1 ... ( # `
 s ) )
-onto-> s )
74 forn 6118 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  s
) ) -onto-> s  ->  ran  f  =  s
)
75 isoeq5 6571 . . . . . . . . 9  |-  ( ran  f  =  s  -> 
( f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  ran  f )  <->  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) ) )
7656, 73, 74, 754syl 19 . . . . . . . 8  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( # `
 s ) ) ,  ran  f )  <-> 
f  Isom  <  ,  <  ( ( 1 ... ( # `
 s ) ) ,  s ) ) )
7772, 76mpbird 247 . . . . . . 7  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  f  Isom  <  ,  <  (
( 1 ... ( # `
 s ) ) ,  ran  f ) )
78 isoeq4 6570 . . . . . . . 8  |-  ( ( 1 ... ( # `  s ) )  =  ( 1 ... ( N  +  1 ) )  ->  ( f  Isom  <  ,  <  (
( 1 ... ( # `
 s ) ) ,  ran  f )  <-> 
f  Isom  <  ,  <  ( ( 1 ... ( N  +  1 ) ) ,  ran  f
) ) )
7963, 78syl 17 . . . . . . 7  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( # `
 s ) ) ,  ran  f )  <-> 
f  Isom  <  ,  <  ( ( 1 ... ( N  +  1 ) ) ,  ran  f
) ) )
8077, 79mpbid 222 . . . . . 6  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  f  Isom  <  ,  <  (
( 1 ... ( N  +  1 ) ) ,  ran  f
) )
8171, 80jca 554 . . . . 5  |-  ( ( ( ph  /\  (
( 1 ... ( N  +  1 ) )  ~~  s  /\  s  C_  A ) )  /\  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s ) )  ->  (
f : ( 1 ... ( N  + 
1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... ( N  +  1 ) ) ,  ran  f ) ) )
8281ex 450 . . . 4  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  (
f  Isom  <  ,  <  ( ( 1 ... ( # `
 s ) ) ,  s )  -> 
( f : ( 1 ... ( N  +  1 ) )
-1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... ( N  + 
1 ) ) ,  ran  f ) ) ) )
8382eximdv 1846 . . 3  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  ( E. f  f  Isom  <  ,  <  ( ( 1 ... ( # `  s
) ) ,  s )  ->  E. f
( f : ( 1 ... ( N  +  1 ) )
-1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... ( N  + 
1 ) ) ,  ran  f ) ) ) )
8454, 83mpd 15 . 2  |-  ( (
ph  /\  ( (
1 ... ( N  + 
1 ) )  ~~  s  /\  s  C_  A
) )  ->  E. f
( f : ( 1 ... ( N  +  1 ) )
-1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... ( N  + 
1 ) ) ,  ran  f ) ) )
8541, 84exlimddv 1863 1  |-  ( ph  ->  E. f ( f : ( 1 ... ( N  +  1 ) ) -1-1-> A  /\  f  Isom  <  ,  <  ( ( 1 ... ( N  +  1 ) ) ,  ran  f
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    Or wor 5034   ran crn 5115   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889  (class class class)co 6650    ~~ cen 7952    ~<_ cdom 7953   Fincfn 7955   RRcr 9935   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  erdsze2  31187
  Copyright terms: Public domain W3C validator