| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erdsze2lem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for erdsze2 31187. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| Ref | Expression |
|---|---|
| erdsze2.r |
|
| erdsze2.s |
|
| erdsze2.f |
|
| erdsze2.a |
|
| erdsze2lem.n |
|
| erdsze2lem.l |
|
| Ref | Expression |
|---|---|
| erdsze2lem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erdsze2lem.n |
. . . . . . . . 9
| |
| 2 | erdsze2.r |
. . . . . . . . . . 11
| |
| 3 | nnm1nn0 11334 |
. . . . . . . . . . 11
| |
| 4 | 2, 3 | syl 17 |
. . . . . . . . . 10
|
| 5 | erdsze2.s |
. . . . . . . . . . 11
| |
| 6 | nnm1nn0 11334 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | syl 17 |
. . . . . . . . . 10
|
| 8 | 4, 7 | nn0mulcld 11356 |
. . . . . . . . 9
|
| 9 | 1, 8 | syl5eqel 2705 |
. . . . . . . 8
|
| 10 | peano2nn0 11333 |
. . . . . . . 8
| |
| 11 | hashfz1 13134 |
. . . . . . . 8
| |
| 12 | 9, 10, 11 | 3syl 18 |
. . . . . . 7
|
| 13 | 12 | adantr 481 |
. . . . . 6
|
| 14 | erdsze2lem.l |
. . . . . . . 8
| |
| 15 | 14 | adantr 481 |
. . . . . . 7
|
| 16 | hashcl 13147 |
. . . . . . . 8
| |
| 17 | nn0ltp1le 11435 |
. . . . . . . 8
| |
| 18 | 9, 16, 17 | syl2an 494 |
. . . . . . 7
|
| 19 | 15, 18 | mpbid 222 |
. . . . . 6
|
| 20 | 13, 19 | eqbrtrd 4675 |
. . . . 5
|
| 21 | fzfid 12772 |
. . . . . 6
| |
| 22 | simpr 477 |
. . . . . 6
| |
| 23 | hashdom 13168 |
. . . . . 6
| |
| 24 | 21, 22, 23 | syl2anc 693 |
. . . . 5
|
| 25 | 20, 24 | mpbid 222 |
. . . 4
|
| 26 | simpr 477 |
. . . . . 6
| |
| 27 | fzfid 12772 |
. . . . . 6
| |
| 28 | isinffi 8818 |
. . . . . 6
| |
| 29 | 26, 27, 28 | syl2anc 693 |
. . . . 5
|
| 30 | erdsze2.a |
. . . . . . . 8
| |
| 31 | reex 10027 |
. . . . . . . 8
| |
| 32 | ssexg 4804 |
. . . . . . . 8
| |
| 33 | 30, 31, 32 | sylancl 694 |
. . . . . . 7
|
| 34 | 33 | adantr 481 |
. . . . . 6
|
| 35 | brdomg 7965 |
. . . . . 6
| |
| 36 | 34, 35 | syl 17 |
. . . . 5
|
| 37 | 29, 36 | mpbird 247 |
. . . 4
|
| 38 | 25, 37 | pm2.61dan 832 |
. . 3
|
| 39 | domeng 7969 |
. . . 4
| |
| 40 | 33, 39 | syl 17 |
. . 3
|
| 41 | 38, 40 | mpbid 222 |
. 2
|
| 42 | simprr 796 |
. . . . . 6
| |
| 43 | 30 | adantr 481 |
. . . . . 6
|
| 44 | 42, 43 | sstrd 3613 |
. . . . 5
|
| 45 | ltso 10118 |
. . . . 5
| |
| 46 | soss 5053 |
. . . . 5
| |
| 47 | 44, 45, 46 | mpisyl 21 |
. . . 4
|
| 48 | fzfid 12772 |
. . . . 5
| |
| 49 | simprl 794 |
. . . . . 6
| |
| 50 | enfi 8176 |
. . . . . 6
| |
| 51 | 49, 50 | syl 17 |
. . . . 5
|
| 52 | 48, 51 | mpbid 222 |
. . . 4
|
| 53 | fz1iso 13246 |
. . . 4
| |
| 54 | 47, 52, 53 | syl2anc 693 |
. . 3
|
| 55 | isof1o 6573 |
. . . . . . . . . 10
| |
| 56 | 55 | adantl 482 |
. . . . . . . . 9
|
| 57 | hashen 13135 |
. . . . . . . . . . . . . . 15
| |
| 58 | 48, 52, 57 | syl2anc 693 |
. . . . . . . . . . . . . 14
|
| 59 | 49, 58 | mpbird 247 |
. . . . . . . . . . . . 13
|
| 60 | 12 | adantr 481 |
. . . . . . . . . . . . 13
|
| 61 | 59, 60 | eqtr3d 2658 |
. . . . . . . . . . . 12
|
| 62 | 61 | adantr 481 |
. . . . . . . . . . 11
|
| 63 | 62 | oveq2d 6666 |
. . . . . . . . . 10
|
| 64 | f1oeq2 6128 |
. . . . . . . . . 10
| |
| 65 | 63, 64 | syl 17 |
. . . . . . . . 9
|
| 66 | 56, 65 | mpbid 222 |
. . . . . . . 8
|
| 67 | f1of1 6136 |
. . . . . . . 8
| |
| 68 | 66, 67 | syl 17 |
. . . . . . 7
|
| 69 | simplrr 801 |
. . . . . . 7
| |
| 70 | f1ss 6106 |
. . . . . . 7
| |
| 71 | 68, 69, 70 | syl2anc 693 |
. . . . . 6
|
| 72 | simpr 477 |
. . . . . . . 8
| |
| 73 | f1ofo 6144 |
. . . . . . . . 9
| |
| 74 | forn 6118 |
. . . . . . . . 9
| |
| 75 | isoeq5 6571 |
. . . . . . . . 9
| |
| 76 | 56, 73, 74, 75 | 4syl 19 |
. . . . . . . 8
|
| 77 | 72, 76 | mpbird 247 |
. . . . . . 7
|
| 78 | isoeq4 6570 |
. . . . . . . 8
| |
| 79 | 63, 78 | syl 17 |
. . . . . . 7
|
| 80 | 77, 79 | mpbid 222 |
. . . . . 6
|
| 81 | 71, 80 | jca 554 |
. . . . 5
|
| 82 | 81 | ex 450 |
. . . 4
|
| 83 | 82 | eximdv 1846 |
. . 3
|
| 84 | 54, 83 | mpd 15 |
. 2
|
| 85 | 41, 84 | exlimddv 1863 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-fz 12327 df-hash 13118 |
| This theorem is referenced by: erdsze2 31187 |
| Copyright terms: Public domain | W3C validator |