| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for eulerpart 30444. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
| Ref | Expression |
|---|---|
| eulerpart.p |
|
| eulerpart.o |
|
| eulerpart.d |
|
| eulerpart.j |
|
| eulerpart.f |
|
| eulerpart.h |
|
| eulerpart.m |
|
| Ref | Expression |
|---|---|
| eulerpartlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerpart.j |
. . . 4
| |
| 2 | nnex 11026 |
. . . 4
| |
| 3 | 1, 2 | rabex2 4815 |
. . 3
|
| 4 | nn0ex 11298 |
. . 3
| |
| 5 | eqid 2622 |
. . 3
| |
| 6 | eulerpart.h |
. . 3
| |
| 7 | 3, 4, 5, 6 | fpwrelmapffs 29509 |
. 2
|
| 8 | eulerpart.m |
. . . 4
| |
| 9 | ssrab2 3687 |
. . . . . . 7
| |
| 10 | 4 | pwex 4848 |
. . . . . . . 8
|
| 11 | inss1 3833 |
. . . . . . . 8
| |
| 12 | mapss 7900 |
. . . . . . . 8
| |
| 13 | 10, 11, 12 | mp2an 708 |
. . . . . . 7
|
| 14 | 9, 13 | sstri 3612 |
. . . . . 6
|
| 15 | 6, 14 | eqsstri 3635 |
. . . . 5
|
| 16 | resmpt 5449 |
. . . . 5
| |
| 17 | 15, 16 | ax-mp 5 |
. . . 4
|
| 18 | 8, 17 | eqtr4i 2647 |
. . 3
|
| 19 | f1oeq1 6127 |
. . 3
| |
| 20 | 18, 19 | ax-mp 5 |
. 2
|
| 21 | 7, 20 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-ac2 9285 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rrecex 10008 ax-cnre 10009 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-fin 7959 df-card 8765 df-acn 8768 df-ac 8939 df-nn 11021 df-n0 11293 |
| This theorem is referenced by: eulerpartgbij 30434 eulerpartlemgvv 30438 eulerpartlemgf 30441 |
| Copyright terms: Public domain | W3C validator |