Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evengpoap3 Structured version   Visualization version   Unicode version

Theorem evengpoap3 41687
Description: If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of an odd Goldbach number and 3. (Contributed by AV, 27-Jul-2020.) (Proof shortened by AV, 15-Sep-2021.)
Assertion
Ref Expression
evengpoap3  |-  ( A. m  e. Odd  ( 7  <  m  ->  m  e. GoldbachOdd  )  ->  ( ( N  e.  ( ZZ>= ` ; 1 2 )  /\  N  e. Even  )  ->  E. o  e. GoldbachOdd  N  =  ( o  +  3 ) ) )
Distinct variable groups:    m, N    o, N

Proof of Theorem evengpoap3
StepHypRef Expression
1 3odd 41617 . . . . . . 7  |-  3  e. Odd
21a1i 11 . . . . . 6  |-  ( N  e.  ( ZZ>= ` ; 1 2 )  -> 
3  e. Odd  )
32anim1i 592 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` ; 1 2 )  /\  N  e. Even 
)  ->  ( 3  e. Odd  /\  N  e. Even  ) )
43ancomd 467 . . . 4  |-  ( ( N  e.  ( ZZ>= ` ; 1 2 )  /\  N  e. Even 
)  ->  ( N  e. Even  /\  3  e. Odd  )
)
5 emoo 41613 . . . 4  |-  ( ( N  e. Even  /\  3  e. Odd  )  ->  ( N  -  3 )  e. Odd 
)
64, 5syl 17 . . 3  |-  ( ( N  e.  ( ZZ>= ` ; 1 2 )  /\  N  e. Even 
)  ->  ( N  -  3 )  e. Odd 
)
7 breq2 4657 . . . . 5  |-  ( m  =  ( N  - 
3 )  ->  (
7  <  m  <->  7  <  ( N  -  3 ) ) )
8 eleq1 2689 . . . . 5  |-  ( m  =  ( N  - 
3 )  ->  (
m  e. GoldbachOdd  <->  ( N  - 
3 )  e. GoldbachOdd  ) )
97, 8imbi12d 334 . . . 4  |-  ( m  =  ( N  - 
3 )  ->  (
( 7  <  m  ->  m  e. GoldbachOdd  )  <->  ( 7  <  ( N  - 
3 )  ->  ( N  -  3 )  e. GoldbachOdd  ) ) )
109adantl 482 . . 3  |-  ( ( ( N  e.  (
ZZ>= ` ; 1 2 )  /\  N  e. Even  )  /\  m  =  ( N  - 
3 ) )  -> 
( ( 7  < 
m  ->  m  e. GoldbachOdd  )  <-> 
( 7  <  ( N  -  3 )  ->  ( N  - 
3 )  e. GoldbachOdd  ) ) )
116, 10rspcdv 3312 . 2  |-  ( ( N  e.  ( ZZ>= ` ; 1 2 )  /\  N  e. Even 
)  ->  ( A. m  e. Odd  ( 7  <  m  ->  m  e. GoldbachOdd  )  ->  ( 7  < 
( N  -  3 )  ->  ( N  -  3 )  e. GoldbachOdd  ) ) )
12 eluz2 11693 . . . . 5  |-  ( N  e.  ( ZZ>= ` ; 1 2 )  <->  (; 1 2  e.  ZZ  /\  N  e.  ZZ  /\ ; 1 2  <_  N ) )
13 7p3e10 11603 . . . . . . . . . 10  |-  ( 7  +  3 )  = ; 1
0
14 1nn0 11308 . . . . . . . . . . 11  |-  1  e.  NN0
15 0nn0 11307 . . . . . . . . . . 11  |-  0  e.  NN0
16 2nn 11185 . . . . . . . . . . 11  |-  2  e.  NN
17 2pos 11112 . . . . . . . . . . 11  |-  0  <  2
1814, 15, 16, 17declt 11530 . . . . . . . . . 10  |- ; 1 0  < ; 1 2
1913, 18eqbrtri 4674 . . . . . . . . 9  |-  ( 7  +  3 )  < ; 1 2
20 7re 11103 . . . . . . . . . . 11  |-  7  e.  RR
21 3re 11094 . . . . . . . . . . 11  |-  3  e.  RR
2220, 21readdcli 10053 . . . . . . . . . 10  |-  ( 7  +  3 )  e.  RR
23 2nn0 11309 . . . . . . . . . . . 12  |-  2  e.  NN0
2414, 23deccl 11512 . . . . . . . . . . 11  |- ; 1 2  e.  NN0
2524nn0rei 11303 . . . . . . . . . 10  |- ; 1 2  e.  RR
26 zre 11381 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  RR )
27 ltletr 10129 . . . . . . . . . 10  |-  ( ( ( 7  +  3 )  e.  RR  /\ ; 1 2  e.  RR  /\  N  e.  RR )  ->  (
( ( 7  +  3 )  < ; 1 2  /\ ; 1 2  <_  N
)  ->  ( 7  +  3 )  < 
N ) )
2822, 25, 26, 27mp3an12i 1428 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
( ( 7  +  3 )  < ; 1 2  /\ ; 1 2  <_  N
)  ->  ( 7  +  3 )  < 
N ) )
2919, 28mpani 712 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (; 1 2  <_  N  ->  (
7  +  3 )  <  N ) )
3029imp 445 . . . . . . 7  |-  ( ( N  e.  ZZ  /\ ; 1 2  <_  N )  -> 
( 7  +  3 )  <  N )
31303adant1 1079 . . . . . 6  |-  ( (; 1
2  e.  ZZ  /\  N  e.  ZZ  /\ ; 1 2  <_  N
)  ->  ( 7  +  3 )  < 
N )
3220a1i 11 . . . . . . 7  |-  ( (; 1
2  e.  ZZ  /\  N  e.  ZZ  /\ ; 1 2  <_  N
)  ->  7  e.  RR )
3321a1i 11 . . . . . . 7  |-  ( (; 1
2  e.  ZZ  /\  N  e.  ZZ  /\ ; 1 2  <_  N
)  ->  3  e.  RR )
34263ad2ant2 1083 . . . . . . 7  |-  ( (; 1
2  e.  ZZ  /\  N  e.  ZZ  /\ ; 1 2  <_  N
)  ->  N  e.  RR )
3532, 33, 34ltaddsubd 10627 . . . . . 6  |-  ( (; 1
2  e.  ZZ  /\  N  e.  ZZ  /\ ; 1 2  <_  N
)  ->  ( (
7  +  3 )  <  N  <->  7  <  ( N  -  3 ) ) )
3631, 35mpbid 222 . . . . 5  |-  ( (; 1
2  e.  ZZ  /\  N  e.  ZZ  /\ ; 1 2  <_  N
)  ->  7  <  ( N  -  3 ) )
3712, 36sylbi 207 . . . 4  |-  ( N  e.  ( ZZ>= ` ; 1 2 )  -> 
7  <  ( N  -  3 ) )
3837adantr 481 . . 3  |-  ( ( N  e.  ( ZZ>= ` ; 1 2 )  /\  N  e. Even 
)  ->  7  <  ( N  -  3 ) )
39 simpr 477 . . . . 5  |-  ( ( ( N  e.  (
ZZ>= ` ; 1 2 )  /\  N  e. Even  )  /\  ( N  -  3 )  e. GoldbachOdd  )  ->  ( N  -  3 )  e. GoldbachOdd  )
40 oveq1 6657 . . . . . . 7  |-  ( o  =  ( N  - 
3 )  ->  (
o  +  3 )  =  ( ( N  -  3 )  +  3 ) )
4140eqeq2d 2632 . . . . . 6  |-  ( o  =  ( N  - 
3 )  ->  ( N  =  ( o  +  3 )  <->  N  =  ( ( N  - 
3 )  +  3 ) ) )
4241adantl 482 . . . . 5  |-  ( ( ( ( N  e.  ( ZZ>= ` ; 1 2 )  /\  N  e. Even  )  /\  ( N  -  3 )  e. GoldbachOdd  )  /\  o  =  ( N  - 
3 ) )  -> 
( N  =  ( o  +  3 )  <-> 
N  =  ( ( N  -  3 )  +  3 ) ) )
43 eluzelcn 11699 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= ` ; 1 2 )  ->  N  e.  CC )
44 3cn 11095 . . . . . . . . 9  |-  3  e.  CC
4543, 44jctir 561 . . . . . . . 8  |-  ( N  e.  ( ZZ>= ` ; 1 2 )  -> 
( N  e.  CC  /\  3  e.  CC ) )
4645adantr 481 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` ; 1 2 )  /\  N  e. Even 
)  ->  ( N  e.  CC  /\  3  e.  CC ) )
4746adantr 481 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= ` ; 1 2 )  /\  N  e. Even  )  /\  ( N  -  3 )  e. GoldbachOdd  )  ->  ( N  e.  CC  /\  3  e.  CC ) )
48 npcan 10290 . . . . . . 7  |-  ( ( N  e.  CC  /\  3  e.  CC )  ->  ( ( N  - 
3 )  +  3 )  =  N )
4948eqcomd 2628 . . . . . 6  |-  ( ( N  e.  CC  /\  3  e.  CC )  ->  N  =  ( ( N  -  3 )  +  3 ) )
5047, 49syl 17 . . . . 5  |-  ( ( ( N  e.  (
ZZ>= ` ; 1 2 )  /\  N  e. Even  )  /\  ( N  -  3 )  e. GoldbachOdd  )  ->  N  =  ( ( N  - 
3 )  +  3 ) )
5139, 42, 50rspcedvd 3317 . . . 4  |-  ( ( ( N  e.  (
ZZ>= ` ; 1 2 )  /\  N  e. Even  )  /\  ( N  -  3 )  e. GoldbachOdd  )  ->  E. o  e. GoldbachOdd 
N  =  ( o  +  3 ) )
5251ex 450 . . 3  |-  ( ( N  e.  ( ZZ>= ` ; 1 2 )  /\  N  e. Even 
)  ->  ( ( N  -  3 )  e. GoldbachOdd  ->  E. o  e. GoldbachOdd  N  =  ( o  +  3 ) ) )
5338, 52embantd 59 . 2  |-  ( ( N  e.  ( ZZ>= ` ; 1 2 )  /\  N  e. Even 
)  ->  ( (
7  <  ( N  -  3 )  -> 
( N  -  3 )  e. GoldbachOdd  )  ->  E. o  e. GoldbachOdd 
N  =  ( o  +  3 ) ) )
5411, 53syldc 48 1  |-  ( A. m  e. Odd  ( 7  <  m  ->  m  e. GoldbachOdd  )  ->  ( ( N  e.  ( ZZ>= ` ; 1 2 )  /\  N  e. Even  )  ->  E. o  e. GoldbachOdd  N  =  ( o  +  3 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   2c2 11070   3c3 11071   7c7 11075   ZZcz 11377  ;cdc 11493   ZZ>=cuz 11687   Even ceven 41537   Odd codd 41538   GoldbachOdd cgbo 41635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-even 41539  df-odd 41540
This theorem is referenced by:  nnsum4primesevenALTV  41689
  Copyright terms: Public domain W3C validator