Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclimlem2 Structured version   Visualization version   Unicode version

Theorem faclimlem2 31630
Description: Lemma for faclim 31632. Show a limit for the inductive step. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
faclimlem2  |-  ( M  e.  NN0  ->  seq 1
(  x.  ,  ( n  e.  NN  |->  ( ( ( 1  +  ( M  /  n
) )  x.  (
1  +  ( 1  /  n ) ) )  /  ( 1  +  ( ( M  +  1 )  /  n ) ) ) ) )  ~~>  ( M  +  1 ) )
Distinct variable group:    n, M

Proof of Theorem faclimlem2
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 faclimlem1 31629 . 2  |-  ( M  e.  NN0  ->  seq 1
(  x.  ,  ( n  e.  NN  |->  ( ( ( 1  +  ( M  /  n
) )  x.  (
1  +  ( 1  /  n ) ) )  /  ( 1  +  ( ( M  +  1 )  /  n ) ) ) ) )  =  ( m  e.  NN  |->  ( ( M  +  1 )  x.  ( ( m  +  1 )  /  ( m  +  ( M  +  1
) ) ) ) ) )
2 nnuz 11723 . . . 4  |-  NN  =  ( ZZ>= `  1 )
3 1zzd 11408 . . . 4  |-  ( M  e.  NN0  ->  1  e.  ZZ )
4 1cnd 10056 . . . . 5  |-  ( M  e.  NN0  ->  1  e.  CC )
5 nn0p1nn 11332 . . . . . 6  |-  ( M  e.  NN0  ->  ( M  +  1 )  e.  NN )
65nnzd 11481 . . . . 5  |-  ( M  e.  NN0  ->  ( M  +  1 )  e.  ZZ )
7 nnex 11026 . . . . . . 7  |-  NN  e.  _V
87mptex 6486 . . . . . 6  |-  ( m  e.  NN  |->  ( ( m  +  1 )  /  ( m  +  ( M  +  1
) ) ) )  e.  _V
98a1i 11 . . . . 5  |-  ( M  e.  NN0  ->  ( m  e.  NN  |->  ( ( m  +  1 )  /  ( m  +  ( M  +  1
) ) ) )  e.  _V )
10 oveq1 6657 . . . . . . . 8  |-  ( m  =  k  ->  (
m  +  1 )  =  ( k  +  1 ) )
11 oveq1 6657 . . . . . . . 8  |-  ( m  =  k  ->  (
m  +  ( M  +  1 ) )  =  ( k  +  ( M  +  1 ) ) )
1210, 11oveq12d 6668 . . . . . . 7  |-  ( m  =  k  ->  (
( m  +  1 )  /  ( m  +  ( M  + 
1 ) ) )  =  ( ( k  +  1 )  / 
( k  +  ( M  +  1 ) ) ) )
13 eqid 2622 . . . . . . 7  |-  ( m  e.  NN  |->  ( ( m  +  1 )  /  ( m  +  ( M  +  1
) ) ) )  =  ( m  e.  NN  |->  ( ( m  +  1 )  / 
( m  +  ( M  +  1 ) ) ) )
14 ovex 6678 . . . . . . 7  |-  ( ( k  +  1 )  /  ( k  +  ( M  +  1 ) ) )  e. 
_V
1512, 13, 14fvmpt 6282 . . . . . 6  |-  ( k  e.  NN  ->  (
( m  e.  NN  |->  ( ( m  + 
1 )  /  (
m  +  ( M  +  1 ) ) ) ) `  k
)  =  ( ( k  +  1 )  /  ( k  +  ( M  +  1 ) ) ) )
1615adantl 482 . . . . 5  |-  ( ( M  e.  NN0  /\  k  e.  NN )  ->  ( ( m  e.  NN  |->  ( ( m  +  1 )  / 
( m  +  ( M  +  1 ) ) ) ) `  k )  =  ( ( k  +  1 )  /  ( k  +  ( M  + 
1 ) ) ) )
172, 3, 4, 6, 9, 16divcnvlin 31618 . . . 4  |-  ( M  e.  NN0  ->  ( m  e.  NN  |->  ( ( m  +  1 )  /  ( m  +  ( M  +  1
) ) ) )  ~~>  1 )
185nncnd 11036 . . . 4  |-  ( M  e.  NN0  ->  ( M  +  1 )  e.  CC )
197mptex 6486 . . . . 5  |-  ( m  e.  NN  |->  ( ( M  +  1 )  x.  ( ( m  +  1 )  / 
( m  +  ( M  +  1 ) ) ) ) )  e.  _V
2019a1i 11 . . . 4  |-  ( M  e.  NN0  ->  ( m  e.  NN  |->  ( ( M  +  1 )  x.  ( ( m  +  1 )  / 
( m  +  ( M  +  1 ) ) ) ) )  e.  _V )
21 peano2nn 11032 . . . . . . . . . 10  |-  ( m  e.  NN  ->  (
m  +  1 )  e.  NN )
2221adantl 482 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  m  e.  NN )  ->  ( m  +  1 )  e.  NN )
2322nnred 11035 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  m  e.  NN )  ->  ( m  +  1 )  e.  RR )
24 simpr 477 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  m  e.  NN )  ->  m  e.  NN )
255adantr 481 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  m  e.  NN )  ->  ( M  +  1 )  e.  NN )
2624, 25nnaddcld 11067 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  m  e.  NN )  ->  ( m  +  ( M  +  1 ) )  e.  NN )
2723, 26nndivred 11069 . . . . . . 7  |-  ( ( M  e.  NN0  /\  m  e.  NN )  ->  ( ( m  + 
1 )  /  (
m  +  ( M  +  1 ) ) )  e.  RR )
2827recnd 10068 . . . . . 6  |-  ( ( M  e.  NN0  /\  m  e.  NN )  ->  ( ( m  + 
1 )  /  (
m  +  ( M  +  1 ) ) )  e.  CC )
2928, 13fmptd 6385 . . . . 5  |-  ( M  e.  NN0  ->  ( m  e.  NN  |->  ( ( m  +  1 )  /  ( m  +  ( M  +  1
) ) ) ) : NN --> CC )
3029ffvelrnda 6359 . . . 4  |-  ( ( M  e.  NN0  /\  k  e.  NN )  ->  ( ( m  e.  NN  |->  ( ( m  +  1 )  / 
( m  +  ( M  +  1 ) ) ) ) `  k )  e.  CC )
3112oveq2d 6666 . . . . . . 7  |-  ( m  =  k  ->  (
( M  +  1 )  x.  ( ( m  +  1 )  /  ( m  +  ( M  +  1
) ) ) )  =  ( ( M  +  1 )  x.  ( ( k  +  1 )  /  (
k  +  ( M  +  1 ) ) ) ) )
32 eqid 2622 . . . . . . 7  |-  ( m  e.  NN  |->  ( ( M  +  1 )  x.  ( ( m  +  1 )  / 
( m  +  ( M  +  1 ) ) ) ) )  =  ( m  e.  NN  |->  ( ( M  +  1 )  x.  ( ( m  + 
1 )  /  (
m  +  ( M  +  1 ) ) ) ) )
33 ovex 6678 . . . . . . 7  |-  ( ( M  +  1 )  x.  ( ( k  +  1 )  / 
( k  +  ( M  +  1 ) ) ) )  e. 
_V
3431, 32, 33fvmpt 6282 . . . . . 6  |-  ( k  e.  NN  ->  (
( m  e.  NN  |->  ( ( M  + 
1 )  x.  (
( m  +  1 )  /  ( m  +  ( M  + 
1 ) ) ) ) ) `  k
)  =  ( ( M  +  1 )  x.  ( ( k  +  1 )  / 
( k  +  ( M  +  1 ) ) ) ) )
3515oveq2d 6666 . . . . . 6  |-  ( k  e.  NN  ->  (
( M  +  1 )  x.  ( ( m  e.  NN  |->  ( ( m  +  1 )  /  ( m  +  ( M  + 
1 ) ) ) ) `  k ) )  =  ( ( M  +  1 )  x.  ( ( k  +  1 )  / 
( k  +  ( M  +  1 ) ) ) ) )
3634, 35eqtr4d 2659 . . . . 5  |-  ( k  e.  NN  ->  (
( m  e.  NN  |->  ( ( M  + 
1 )  x.  (
( m  +  1 )  /  ( m  +  ( M  + 
1 ) ) ) ) ) `  k
)  =  ( ( M  +  1 )  x.  ( ( m  e.  NN  |->  ( ( m  +  1 )  /  ( m  +  ( M  +  1
) ) ) ) `
 k ) ) )
3736adantl 482 . . . 4  |-  ( ( M  e.  NN0  /\  k  e.  NN )  ->  ( ( m  e.  NN  |->  ( ( M  +  1 )  x.  ( ( m  + 
1 )  /  (
m  +  ( M  +  1 ) ) ) ) ) `  k )  =  ( ( M  +  1 )  x.  ( ( m  e.  NN  |->  ( ( m  +  1 )  /  ( m  +  ( M  + 
1 ) ) ) ) `  k ) ) )
382, 3, 17, 18, 20, 30, 37climmulc2 14367 . . 3  |-  ( M  e.  NN0  ->  ( m  e.  NN  |->  ( ( M  +  1 )  x.  ( ( m  +  1 )  / 
( m  +  ( M  +  1 ) ) ) ) )  ~~>  ( ( M  + 
1 )  x.  1 ) )
3918mulid1d 10057 . . 3  |-  ( M  e.  NN0  ->  ( ( M  +  1 )  x.  1 )  =  ( M  +  1 ) )
4038, 39breqtrd 4679 . 2  |-  ( M  e.  NN0  ->  ( m  e.  NN  |->  ( ( M  +  1 )  x.  ( ( m  +  1 )  / 
( m  +  ( M  +  1 ) ) ) ) )  ~~>  ( M  +  1 ) )
411, 40eqbrtrd 4675 1  |-  ( M  e.  NN0  ->  seq 1
(  x.  ,  ( n  e.  NN  |->  ( ( ( 1  +  ( M  /  n
) )  x.  (
1  +  ( 1  /  n ) ) )  /  ( 1  +  ( ( M  +  1 )  /  n ) ) ) ) )  ~~>  ( M  +  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937    + caddc 9939    x. cmul 9941    / cdiv 10684   NNcn 11020   NN0cn0 11292    seqcseq 12801    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-seq 12802  df-exp 12861  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220
This theorem is referenced by:  faclim  31632
  Copyright terms: Public domain W3C validator