MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpnabllem1 Structured version   Visualization version   Unicode version

Theorem frgpnabllem1 18276
Description: Lemma for frgpnabl 18278. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
frgpnabl.g  |-  G  =  (freeGrp `  I )
frgpnabl.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
frgpnabl.r  |-  .~  =  ( ~FG  `  I )
frgpnabl.p  |-  .+  =  ( +g  `  G )
frgpnabl.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
frgpnabl.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
frgpnabl.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
frgpnabl.u  |-  U  =  (varFGrp `  I )
frgpnabl.i  |-  ( ph  ->  I  e.  _V )
frgpnabl.a  |-  ( ph  ->  A  e.  I )
frgpnabl.b  |-  ( ph  ->  B  e.  I )
Assertion
Ref Expression
frgpnabllem1  |-  ( ph  ->  <" <. A ,  (/)
>. <. B ,  (/) >. ">  e.  ( D  i^i  ( ( U `
 A )  .+  ( U `  B ) ) ) )
Distinct variable groups:    x, A    v, n, w, x, y, z, I    ph, x    x, 
.~ , y, z    x, B    n, W, v, w, x, y, z    x, G    n, M, v, w, x    x, T
Allowed substitution hints:    ph( y, z, w, v, n)    A( y, z, w, v, n)    B( y, z, w, v, n)    D( x, y, z, w, v, n)    .+ ( x, y, z, w, v, n)    .~ ( w, v, n)    T( y, z, w, v, n)    U( x, y, z, w, v, n)    G( y,
z, w, v, n)    M( y, z)

Proof of Theorem frgpnabllem1
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpnabl.a . . . . . . 7  |-  ( ph  ->  A  e.  I )
2 0ex 4790 . . . . . . . . 9  |-  (/)  e.  _V
32prid1 4297 . . . . . . . 8  |-  (/)  e.  { (/)
,  1o }
4 df2o3 7573 . . . . . . . 8  |-  2o  =  { (/) ,  1o }
53, 4eleqtrri 2700 . . . . . . 7  |-  (/)  e.  2o
6 opelxpi 5148 . . . . . . 7  |-  ( ( A  e.  I  /\  (/) 
e.  2o )  ->  <. A ,  (/) >.  e.  ( I  X.  2o ) )
71, 5, 6sylancl 694 . . . . . 6  |-  ( ph  -> 
<. A ,  (/) >.  e.  ( I  X.  2o ) )
8 frgpnabl.b . . . . . . 7  |-  ( ph  ->  B  e.  I )
9 opelxpi 5148 . . . . . . 7  |-  ( ( B  e.  I  /\  (/) 
e.  2o )  ->  <. B ,  (/) >.  e.  ( I  X.  2o ) )
108, 5, 9sylancl 694 . . . . . 6  |-  ( ph  -> 
<. B ,  (/) >.  e.  ( I  X.  2o ) )
117, 10s2cld 13616 . . . . 5  |-  ( ph  ->  <" <. A ,  (/)
>. <. B ,  (/) >. ">  e. Word  ( I  X.  2o ) )
12 frgpnabl.w . . . . . 6  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
13 frgpnabl.i . . . . . . . 8  |-  ( ph  ->  I  e.  _V )
14 2on 7568 . . . . . . . 8  |-  2o  e.  On
15 xpexg 6960 . . . . . . . 8  |-  ( ( I  e.  _V  /\  2o  e.  On )  -> 
( I  X.  2o )  e.  _V )
1613, 14, 15sylancl 694 . . . . . . 7  |-  ( ph  ->  ( I  X.  2o )  e.  _V )
17 wrdexg 13315 . . . . . . 7  |-  ( ( I  X.  2o )  e.  _V  -> Word  ( I  X.  2o )  e. 
_V )
18 fvi 6255 . . . . . . 7  |-  (Word  (
I  X.  2o )  e.  _V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
1916, 17, 183syl 18 . . . . . 6  |-  ( ph  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  ( I  X.  2o ) )
2012, 19syl5eq 2668 . . . . 5  |-  ( ph  ->  W  = Word  ( I  X.  2o ) )
2111, 20eleqtrrd 2704 . . . 4  |-  ( ph  ->  <" <. A ,  (/)
>. <. B ,  (/) >. ">  e.  W )
22 1n0 7575 . . . . . . 7  |-  1o  =/=  (/)
23 2cn 11091 . . . . . . . . . . . . . 14  |-  2  e.  CC
2423addid2i 10224 . . . . . . . . . . . . 13  |-  ( 0  +  2 )  =  2
25 s2len 13634 . . . . . . . . . . . . 13  |-  ( # `  <" <. A ,  (/)
>. <. B ,  (/) >. "> )  =  2
2624, 25eqtr4i 2647 . . . . . . . . . . . 12  |-  ( 0  +  2 )  =  ( # `  <"
<. A ,  (/) >. <. B ,  (/)
>. "> )
27 frgpnabl.r . . . . . . . . . . . . . 14  |-  .~  =  ( ~FG  `  I )
28 frgpnabl.m . . . . . . . . . . . . . 14  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
29 frgpnabl.t . . . . . . . . . . . . . 14  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
3012, 27, 28, 29efgtlen 18139 . . . . . . . . . . . . 13  |-  ( ( x  e.  W  /\  <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  ran  ( T `  x ) )  -> 
( # `  <" <. A ,  (/) >. <. B ,  (/) >. "> )  =  ( ( # `  x
)  +  2 ) )
3130adantll 750 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  W )  /\  <"
<. A ,  (/) >. <. B ,  (/)
>. ">  e.  ran  ( T `  x ) )  ->  ( # `  <"
<. A ,  (/) >. <. B ,  (/)
>. "> )  =  ( ( # `  x
)  +  2 ) )
3226, 31syl5eq 2668 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  W )  /\  <"
<. A ,  (/) >. <. B ,  (/)
>. ">  e.  ran  ( T `  x ) )  ->  ( 0  +  2 )  =  ( ( # `  x
)  +  2 ) )
3332ex 450 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  W )  ->  ( <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  ran  ( T `  x )  ->  (
0  +  2 )  =  ( ( # `  x )  +  2 ) ) )
34 0cnd 10033 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  W )  ->  0  e.  CC )
35 simpr 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  W )  ->  x  e.  W )
3612efgrcl 18128 . . . . . . . . . . . . . . . 16  |-  ( x  e.  W  ->  (
I  e.  _V  /\  W  = Word  ( I  X.  2o ) ) )
3736simprd 479 . . . . . . . . . . . . . . 15  |-  ( x  e.  W  ->  W  = Word  ( I  X.  2o ) )
3837adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  W )  ->  W  = Word  ( I  X.  2o ) )
3935, 38eleqtrd 2703 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  W )  ->  x  e. Word  ( I  X.  2o ) )
40 lencl 13324 . . . . . . . . . . . . 13  |-  ( x  e. Word  ( I  X.  2o )  ->  ( # `  x )  e.  NN0 )
4139, 40syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  W )  ->  ( # `
 x )  e. 
NN0 )
4241nn0cnd 11353 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  W )  ->  ( # `
 x )  e.  CC )
43 2cnd 11093 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  W )  ->  2  e.  CC )
4434, 42, 43addcan2d 10240 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  W )  ->  (
( 0  +  2 )  =  ( (
# `  x )  +  2 )  <->  0  =  ( # `  x ) ) )
4533, 44sylibd 229 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  W )  ->  ( <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  ran  ( T `  x )  ->  0  =  ( # `  x
) ) )
4612, 27, 28, 29efgtf 18135 . . . . . . . . . . . . . . . . . 18  |-  ( (/)  e.  W  ->  ( ( T `  (/) )  =  ( a  e.  ( 0 ... ( # `  (/) ) ) ,  b  e.  ( I  X.  2o )  |->  (
(/) splice  <. a ,  a ,  <" b ( M `  b ) "> >. )
)  /\  ( T `  (/) ) : ( ( 0 ... ( # `
 (/) ) )  X.  ( I  X.  2o ) ) --> W ) )
4746adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  (/)  e.  W
)  ->  ( ( T `  (/) )  =  ( a  e.  ( 0 ... ( # `  (/) ) ) ,  b  e.  ( I  X.  2o )  |->  (
(/) splice  <. a ,  a ,  <" b ( M `  b ) "> >. )
)  /\  ( T `  (/) ) : ( ( 0 ... ( # `
 (/) ) )  X.  ( I  X.  2o ) ) --> W ) )
4847simpld 475 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  (/)  e.  W
)  ->  ( T `  (/) )  =  ( a  e.  ( 0 ... ( # `  (/) ) ) ,  b  e.  ( I  X.  2o ) 
|->  ( (/) splice  <. a ,  a ,  <" b
( M `  b
) "> >. )
) )
4948rneqd 5353 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  (/)  e.  W
)  ->  ran  ( T `
 (/) )  =  ran  ( a  e.  ( 0 ... ( # `  (/) ) ) ,  b  e.  ( I  X.  2o )  |->  (
(/) splice  <. a ,  a ,  <" b ( M `  b ) "> >. )
) )
5049eleq2d 2687 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  (/)  e.  W
)  ->  ( <"
<. A ,  (/) >. <. B ,  (/)
>. ">  e.  ran  ( T `  (/) )  <->  <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  ran  (
a  e.  ( 0 ... ( # `  (/) ) ) ,  b  e.  ( I  X.  2o ) 
|->  ( (/) splice  <. a ,  a ,  <" b
( M `  b
) "> >. )
) ) )
51 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( a  e.  ( 0 ... ( # `  (/) ) ) ,  b  e.  ( I  X.  2o ) 
|->  ( (/) splice  <. a ,  a ,  <" b
( M `  b
) "> >. )
)  =  ( a  e.  ( 0 ... ( # `  (/) ) ) ,  b  e.  ( I  X.  2o ) 
|->  ( (/) splice  <. a ,  a ,  <" b
( M `  b
) "> >. )
)
52 ovex 6678 . . . . . . . . . . . . . . . 16  |-  ( (/) splice  <.
a ,  a , 
<" b ( M `
 b ) "> >. )  e.  _V
5351, 52elrnmpt2 6773 . . . . . . . . . . . . . . 15  |-  ( <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  ran  ( a  e.  ( 0 ... ( # `
 (/) ) ) ,  b  e.  ( I  X.  2o )  |->  (
(/) splice  <. a ,  a ,  <" b ( M `  b ) "> >. )
)  <->  E. a  e.  ( 0 ... ( # `  (/) ) ) E. b  e.  ( I  X.  2o ) <" <. A ,  (/) >. <. B ,  (/) >. ">  =  ( (/) splice  <. a ,  a ,  <" b ( M `  b ) "> >.
) )
54 wrd0 13330 . . . . . . . . . . . . . . . . . . . . 21  |-  (/)  e. Word  (
I  X.  2o )
5554a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  (/)  e. Word  ( I  X.  2o ) )
56 simprr 796 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  b  e.  ( I  X.  2o ) )
5728efgmf 18126 . . . . . . . . . . . . . . . . . . . . . . 23  |-  M :
( I  X.  2o )
--> ( I  X.  2o )
5857ffvelrni 6358 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( b  e.  ( I  X.  2o )  ->  ( M `
 b )  e.  ( I  X.  2o ) )
5956, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( M `  b )  e.  ( I  X.  2o ) )
6056, 59s2cld 13616 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  <" b ( M `  b ) ">  e. Word  (
I  X.  2o ) )
61 ccatlid 13369 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (/)  e. Word  ( I  X.  2o )  ->  ( (/) ++  (/) )  =  (/) )
6254, 61ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (/) ++  (/) )  =  (/)
6362oveq1i 6660 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
(/) ++  (/) ) ++  (/) )  =  ( (/) ++  (/) )
6463, 62eqtr2i 2645 . . . . . . . . . . . . . . . . . . . . 21  |-  (/)  =  ( ( (/) ++  (/) ) ++  (/) )
6564a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  (/)  =  ( (
(/) ++  (/) ) ++  (/) ) )
66 simprl 794 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  e.  ( 0 ... ( # `  (/) ) ) )
67 hash0 13158 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( # `  (/) )  =  0
6867oveq2i 6661 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 0 ... ( # `  (/) ) )  =  ( 0 ... 0 )
6966, 68syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  e.  ( 0 ... 0 ) )
70 elfz1eq 12352 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( a  e.  ( 0 ... 0 )  ->  a  =  0 )
7169, 70syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  =  0 )
7271, 67syl6eqr 2674 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  =  (
# `  (/) ) )
7367oveq2i 6661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( a  +  ( # `  (/) ) )  =  ( a  +  0 )
74 0cn 10032 . . . . . . . . . . . . . . . . . . . . . . 23  |-  0  e.  CC
7571, 74syl6eqel 2709 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  e.  CC )
7675addid1d 10236 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( a  +  0 )  =  a )
7773, 76syl5req 2669 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  a  =  ( a  +  ( # `  (/) ) ) )
7855, 55, 55, 60, 65, 72, 77splval2 13508 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( (/) splice  <. a ,  a ,  <" b ( M `  b ) "> >.
)  =  ( (
(/) ++  <" b ( M `  b ) "> ) ++  (/) ) )
79 ccatlid 13369 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <" b ( M `
 b ) ">  e. Word  ( I  X.  2o )  ->  ( (/) ++  <" b ( M `
 b ) "> )  =  <" b ( M `  b ) "> )
8079oveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <" b ( M `
 b ) ">  e. Word  ( I  X.  2o )  ->  (
( (/) ++  <" b ( M `  b ) "> ) ++  (/) )  =  ( <" b ( M `  b ) "> ++  (/) ) )
81 ccatrid 13370 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <" b ( M `
 b ) ">  e. Word  ( I  X.  2o )  ->  ( <" b ( M `
 b ) "> ++  (/) )  =  <" b ( M `  b ) "> )
8280, 81eqtrd 2656 . . . . . . . . . . . . . . . . . . . 20  |-  ( <" b ( M `
 b ) ">  e. Word  ( I  X.  2o )  ->  (
( (/) ++  <" b ( M `  b ) "> ) ++  (/) )  =  <" b
( M `  b
) "> )
8360, 82syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( ( (/) ++  <" b ( M `
 b ) "> ) ++  (/) )  = 
<" b ( M `
 b ) "> )
8478, 83eqtrd 2656 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( (/) splice  <. a ,  a ,  <" b ( M `  b ) "> >.
)  =  <" b
( M `  b
) "> )
8584eqeq2d 2632 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( <" <. A ,  (/) >. <. B ,  (/) >. ">  =  ( (/) splice  <.
a ,  a , 
<" b ( M `
 b ) "> >. )  <->  <" <. A ,  (/) >. <. B ,  (/) >. ">  =  <" b
( M `  b
) "> )
)
861ad3antrrr 766 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  (/) 
e.  W )  /\  ( a  e.  ( 0 ... ( # `  (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  =  <" b
( M `  b
) "> )  ->  A  e.  I )
87 1on 7567 . . . . . . . . . . . . . . . . . . . 20  |-  1o  e.  On
8887a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  (/) 
e.  W )  /\  ( a  e.  ( 0 ... ( # `  (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  =  <" b
( M `  b
) "> )  ->  1o  e.  On )
89 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  (/) 
e.  W )  /\  ( a  e.  ( 0 ... ( # `  (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  =  <" b
( M `  b
) "> )  ->  <" <. A ,  (/)
>. <. B ,  (/) >. ">  =  <" b
( M `  b
) "> )
9089fveq1d 6193 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  (/) 
e.  W )  /\  ( a  e.  ( 0 ... ( # `  (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  =  <" b
( M `  b
) "> )  ->  ( <" <. A ,  (/) >. <. B ,  (/) >. "> `  1 )  =  ( <" b
( M `  b
) "> `  1
) )
91 opex 4932 . . . . . . . . . . . . . . . . . . . . . 22  |-  <. B ,  (/)
>.  e.  _V
92 s2fv1 13633 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <. B ,  (/) >.  e.  _V  ->  ( <" <. A ,  (/) >. <. B ,  (/) >. "> `  1 )  =  <. B ,  (/) >.
)
9391, 92ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <" <. A ,  (/) >. <. B ,  (/) >. "> `  1 )  =  <. B ,  (/) >.
94 fvex 6201 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( M `
 b )  e. 
_V
95 s2fv1 13633 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M `  b )  e.  _V  ->  ( <" b ( M `
 b ) "> `  1 )  =  ( M `  b ) )
9694, 95ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <" b ( M `
 b ) "> `  1 )  =  ( M `  b )
9790, 93, 963eqtr3g 2679 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  (/) 
e.  W )  /\  ( a  e.  ( 0 ... ( # `  (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  =  <" b
( M `  b
) "> )  -> 
<. B ,  (/) >.  =  ( M `  b ) )
9889fveq1d 6193 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  (/) 
e.  W )  /\  ( a  e.  ( 0 ... ( # `  (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  =  <" b
( M `  b
) "> )  ->  ( <" <. A ,  (/) >. <. B ,  (/) >. "> `  0 )  =  ( <" b
( M `  b
) "> `  0
) )
99 opex 4932 . . . . . . . . . . . . . . . . . . . . . . 23  |-  <. A ,  (/)
>.  e.  _V
100 s2fv0 13632 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( <. A ,  (/) >.  e.  _V  ->  ( <" <. A ,  (/) >. <. B ,  (/) >. "> `  0 )  =  <. A ,  (/) >.
)
10199, 100ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <" <. A ,  (/) >. <. B ,  (/) >. "> `  0 )  =  <. A ,  (/) >.
102 vex 3203 . . . . . . . . . . . . . . . . . . . . . . 23  |-  b  e. 
_V
103 s2fv0 13632 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  e.  _V  ->  ( <" b ( M `
 b ) "> `  0 )  =  b )
104102, 103ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <" b ( M `
 b ) "> `  0 )  =  b
10598, 101, 1043eqtr3g 2679 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  (/) 
e.  W )  /\  ( a  e.  ( 0 ... ( # `  (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  =  <" b
( M `  b
) "> )  -> 
<. A ,  (/) >.  =  b )
106105fveq2d 6195 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  (/) 
e.  W )  /\  ( a  e.  ( 0 ... ( # `  (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  =  <" b
( M `  b
) "> )  ->  ( M `  <. A ,  (/) >. )  =  ( M `  b ) )
10728efgmval 18125 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  I  /\  (/) 
e.  2o )  -> 
( A M (/) )  =  <. A , 
( 1o  \  (/) ) >.
)
10886, 5, 107sylancl 694 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  (/) 
e.  W )  /\  ( a  e.  ( 0 ... ( # `  (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  =  <" b
( M `  b
) "> )  ->  ( A M (/) )  =  <. A , 
( 1o  \  (/) ) >.
)
109 df-ov 6653 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A M (/) )  =  ( M `  <. A ,  (/)
>. )
110 dif0 3950 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1o 
\  (/) )  =  1o
111110opeq2i 4406 . . . . . . . . . . . . . . . . . . . . 21  |-  <. A , 
( 1o  \  (/) ) >.  =  <. A ,  1o >.
112108, 109, 1113eqtr3g 2679 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  (/) 
e.  W )  /\  ( a  e.  ( 0 ... ( # `  (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  =  <" b
( M `  b
) "> )  ->  ( M `  <. A ,  (/) >. )  =  <. A ,  1o >. )
11397, 106, 1123eqtr2rd 2663 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  (/) 
e.  W )  /\  ( a  e.  ( 0 ... ( # `  (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  =  <" b
( M `  b
) "> )  -> 
<. A ,  1o >.  = 
<. B ,  (/) >. )
114 opthg 4946 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  I  /\  1o  e.  On )  -> 
( <. A ,  1o >.  =  <. B ,  (/) >.  <->  ( A  =  B  /\  1o  =  (/) ) ) )
115114simplbda 654 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  I  /\  1o  e.  On )  /\  <. A ,  1o >.  =  <. B ,  (/) >.
)  ->  1o  =  (/) )
11686, 88, 113, 115syl21anc 1325 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  (/) 
e.  W )  /\  ( a  e.  ( 0 ... ( # `  (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  =  <" b
( M `  b
) "> )  ->  1o  =  (/) )
117116ex 450 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( <" <. A ,  (/) >. <. B ,  (/) >. ">  =  <" b
( M `  b
) ">  ->  1o  =  (/) ) )
11885, 117sylbid 230 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (/)  e.  W
)  /\  ( a  e.  ( 0 ... ( # `
 (/) ) )  /\  b  e.  ( I  X.  2o ) ) )  ->  ( <" <. A ,  (/) >. <. B ,  (/) >. ">  =  ( (/) splice  <.
a ,  a , 
<" b ( M `
 b ) "> >. )  ->  1o  =  (/) ) )
119118rexlimdvva 3038 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  (/)  e.  W
)  ->  ( E. a  e.  ( 0 ... ( # `  (/) ) ) E. b  e.  ( I  X.  2o )
<" <. A ,  (/) >. <. B ,  (/) >. ">  =  ( (/) splice  <. a ,  a ,  <" b ( M `  b ) "> >.
)  ->  1o  =  (/) ) )
12053, 119syl5bi 232 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  (/)  e.  W
)  ->  ( <"
<. A ,  (/) >. <. B ,  (/)
>. ">  e.  ran  ( a  e.  ( 0 ... ( # `  (/) ) ) ,  b  e.  ( I  X.  2o )  |->  (
(/) splice  <. a ,  a ,  <" b ( M `  b ) "> >. )
)  ->  1o  =  (/) ) )
12150, 120sylbid 230 . . . . . . . . . . . . 13  |-  ( (
ph  /\  (/)  e.  W
)  ->  ( <"
<. A ,  (/) >. <. B ,  (/)
>. ">  e.  ran  ( T `  (/) )  ->  1o  =  (/) ) )
122121expimpd 629 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( (/)  e.  W  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  e.  ran  ( T `  (/) ) )  ->  1o  =  (/) ) )
123 vex 3203 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
124 hasheq0 13154 . . . . . . . . . . . . . . . 16  |-  ( x  e.  _V  ->  (
( # `  x )  =  0  <->  x  =  (/) ) )
125123, 124ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( (
# `  x )  =  0  <->  x  =  (/) )
126 eleq1 2689 . . . . . . . . . . . . . . . 16  |-  ( x  =  (/)  ->  ( x  e.  W  <->  (/)  e.  W
) )
127 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  (/)  ->  ( T `
 x )  =  ( T `  (/) ) )
128127rneqd 5353 . . . . . . . . . . . . . . . . 17  |-  ( x  =  (/)  ->  ran  ( T `  x )  =  ran  ( T `  (/) ) )
129128eleq2d 2687 . . . . . . . . . . . . . . . 16  |-  ( x  =  (/)  ->  ( <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  ran  ( T `  x )  <->  <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  ran  ( T `  (/) ) ) )
130126, 129anbi12d 747 . . . . . . . . . . . . . . 15  |-  ( x  =  (/)  ->  ( ( x  e.  W  /\  <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  ran  ( T `  x ) )  <->  ( (/)  e.  W  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  e.  ran  ( T `  (/) ) ) ) )
131125, 130sylbi 207 . . . . . . . . . . . . . 14  |-  ( (
# `  x )  =  0  ->  (
( x  e.  W  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  e.  ran  ( T `  x )
)  <->  ( (/)  e.  W  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  e.  ran  ( T `  (/) ) ) ) )
132131eqcoms 2630 . . . . . . . . . . . . 13  |-  ( 0  =  ( # `  x
)  ->  ( (
x  e.  W  /\  <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  ran  ( T `  x ) )  <->  ( (/)  e.  W  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  e.  ran  ( T `  (/) ) ) ) )
133132imbi1d 331 . . . . . . . . . . . 12  |-  ( 0  =  ( # `  x
)  ->  ( (
( x  e.  W  /\  <" <. A ,  (/)
>. <. B ,  (/) >. ">  e.  ran  ( T `  x )
)  ->  1o  =  (/) )  <->  ( ( (/)  e.  W  /\  <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  ran  ( T `  (/) ) )  ->  1o  =  (/) ) ) )
134122, 133syl5ibrcom 237 . . . . . . . . . . 11  |-  ( ph  ->  ( 0  =  (
# `  x )  ->  ( ( x  e.  W  /\  <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  ran  ( T `  x )
)  ->  1o  =  (/) ) ) )
135134com23 86 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  W  /\  <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  ran  ( T `  x )
)  ->  ( 0  =  ( # `  x
)  ->  1o  =  (/) ) ) )
136135expdimp 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  W )  ->  ( <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  ran  ( T `  x )  ->  (
0  =  ( # `  x )  ->  1o  =  (/) ) ) )
13745, 136mpdd 43 . . . . . . . 8  |-  ( (
ph  /\  x  e.  W )  ->  ( <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  ran  ( T `  x )  ->  1o  =  (/) ) )
138137necon3ad 2807 . . . . . . 7  |-  ( (
ph  /\  x  e.  W )  ->  ( 1o  =/=  (/)  ->  -.  <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  ran  ( T `  x )
) )
13922, 138mpi 20 . . . . . 6  |-  ( (
ph  /\  x  e.  W )  ->  -.  <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  ran  ( T `  x ) )
140139nrexdv 3001 . . . . 5  |-  ( ph  ->  -.  E. x  e.  W  <" <. A ,  (/)
>. <. B ,  (/) >. ">  e.  ran  ( T `  x )
)
141 eliun 4524 . . . . 5  |-  ( <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  U_ x  e.  W  ran  ( T `  x
)  <->  E. x  e.  W  <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  ran  ( T `  x ) )
142140, 141sylnibr 319 . . . 4  |-  ( ph  ->  -.  <" <. A ,  (/)
>. <. B ,  (/) >. ">  e.  U_ x  e.  W  ran  ( T `
 x ) )
14321, 142eldifd 3585 . . 3  |-  ( ph  ->  <" <. A ,  (/)
>. <. B ,  (/) >. ">  e.  ( W 
\  U_ x  e.  W  ran  ( T `  x
) ) )
144 frgpnabl.d . . 3  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
145143, 144syl6eleqr 2712 . 2  |-  ( ph  ->  <" <. A ,  (/)
>. <. B ,  (/) >. ">  e.  D )
146 df-s2 13593 . . . . 5  |-  <" <. A ,  (/) >. <. B ,  (/) >. ">  =  ( <" <. A ,  (/) >. "> ++  <" <. B ,  (/)
>. "> )
14712, 27efger 18131 . . . . . . 7  |-  .~  Er  W
148147a1i 11 . . . . . 6  |-  ( ph  ->  .~  Er  W )
149148, 21erref 7762 . . . . 5  |-  ( ph  ->  <" <. A ,  (/)
>. <. B ,  (/) >. ">  .~  <" <. A ,  (/) >. <. B ,  (/) >. "> )
150146, 149syl5eqbrr 4689 . . . 4  |-  ( ph  ->  ( <" <. A ,  (/) >. "> ++  <" <. B ,  (/) >. "> )  .~  <" <. A ,  (/)
>. <. B ,  (/) >. "> )
151 ovex 6678 . . . . . 6  |-  ( <" <. A ,  (/) >. "> ++  <" <. B ,  (/)
>. "> )  e. 
_V
152146, 151eqeltri 2697 . . . . 5  |-  <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  _V
153152, 151elec 7786 . . . 4  |-  ( <" <. A ,  (/) >. <. B ,  (/) >. ">  e.  [ ( <" <. A ,  (/) >. "> ++  <" <. B ,  (/) >. "> ) ]  .~  <->  ( <" <. A ,  (/) >. "> ++  <" <. B ,  (/) >. "> )  .~  <" <. A ,  (/)
>. <. B ,  (/) >. "> )
154150, 153sylibr 224 . . 3  |-  ( ph  ->  <" <. A ,  (/)
>. <. B ,  (/) >. ">  e.  [ (
<" <. A ,  (/) >. "> ++  <" <. B ,  (/)
>. "> ) ]  .~  )
155 frgpnabl.u . . . . . . 7  |-  U  =  (varFGrp `  I )
15627, 155vrgpval 18180 . . . . . 6  |-  ( ( I  e.  _V  /\  A  e.  I )  ->  ( U `  A
)  =  [ <"
<. A ,  (/) >. "> ]  .~  )
15713, 1, 156syl2anc 693 . . . . 5  |-  ( ph  ->  ( U `  A
)  =  [ <"
<. A ,  (/) >. "> ]  .~  )
15827, 155vrgpval 18180 . . . . . 6  |-  ( ( I  e.  _V  /\  B  e.  I )  ->  ( U `  B
)  =  [ <"
<. B ,  (/) >. "> ]  .~  )
15913, 8, 158syl2anc 693 . . . . 5  |-  ( ph  ->  ( U `  B
)  =  [ <"
<. B ,  (/) >. "> ]  .~  )
160157, 159oveq12d 6668 . . . 4  |-  ( ph  ->  ( ( U `  A )  .+  ( U `  B )
)  =  ( [
<" <. A ,  (/) >. "> ]  .~  .+  [
<" <. B ,  (/) >. "> ]  .~  )
)
1617s1cld 13383 . . . . . 6  |-  ( ph  ->  <" <. A ,  (/)
>. ">  e. Word  (
I  X.  2o ) )
162161, 20eleqtrrd 2704 . . . . 5  |-  ( ph  ->  <" <. A ,  (/)
>. ">  e.  W
)
16310s1cld 13383 . . . . . 6  |-  ( ph  ->  <" <. B ,  (/)
>. ">  e. Word  (
I  X.  2o ) )
164163, 20eleqtrrd 2704 . . . . 5  |-  ( ph  ->  <" <. B ,  (/)
>. ">  e.  W
)
165 frgpnabl.g . . . . . 6  |-  G  =  (freeGrp `  I )
166 frgpnabl.p . . . . . 6  |-  .+  =  ( +g  `  G )
16712, 165, 27, 166frgpadd 18176 . . . . 5  |-  ( (
<" <. A ,  (/) >. ">  e.  W  /\  <" <. B ,  (/) >. ">  e.  W )  ->  ( [ <"
<. A ,  (/) >. "> ]  .~  .+  [ <"
<. B ,  (/) >. "> ]  .~  )  =  [
( <" <. A ,  (/)
>. "> ++  <" <. B ,  (/) >. "> ) ]  .~  )
168162, 164, 167syl2anc 693 . . . 4  |-  ( ph  ->  ( [ <" <. A ,  (/) >. "> ]  .~  .+ 
[ <" <. B ,  (/)
>. "> ]  .~  )  =  [ ( <" <. A ,  (/) >. "> ++  <" <. B ,  (/)
>. "> ) ]  .~  )
169160, 168eqtrd 2656 . . 3  |-  ( ph  ->  ( ( U `  A )  .+  ( U `  B )
)  =  [ (
<" <. A ,  (/) >. "> ++  <" <. B ,  (/)
>. "> ) ]  .~  )
170154, 169eleqtrrd 2704 . 2  |-  ( ph  ->  <" <. A ,  (/)
>. <. B ,  (/) >. ">  e.  ( ( U `  A ) 
.+  ( U `  B ) ) )
171145, 170elind 3798 1  |-  ( ph  ->  <" <. A ,  (/)
>. <. B ,  (/) >. ">  e.  ( D  i^i  ( ( U `
 A )  .+  ( U `  B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    \ cdif 3571    i^i cin 3573   (/)c0 3915   {cpr 4179   <.cop 4183   <.cotp 4185   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112   ran crn 5115   Oncon0 5723   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554    Er wer 7739   [cec 7740   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939   2c2 11070   NN0cn0 11292   ...cfz 12326   #chash 13117  Word cword 13291   ++ cconcat 13293   <"cs1 13294   splice csplice 13296   <"cs2 13586   +g cplusg 15941   ~FG cefg 18119  freeGrpcfrgp 18120  varFGrpcvrgp 18121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-frmd 17386  df-efg 18122  df-frgp 18123  df-vrgp 18124
This theorem is referenced by:  frgpnabllem2  18277
  Copyright terms: Public domain W3C validator