MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiublem Structured version   Visualization version   Unicode version

Theorem fsuppmapnn0fiublem 12789
Description: Lemma for fsuppmapnn0fiub 12790 and fsuppmapnn0fiubex 12792. (Contributed by AV, 2-Oct-2019.)
Hypotheses
Ref Expression
fsuppmapnn0fiub.u  |-  U  = 
U_ f  e.  M  ( f supp  Z )
fsuppmapnn0fiub.s  |-  S  =  sup ( U ,  RR ,  <  )
Assertion
Ref Expression
fsuppmapnn0fiublem  |-  ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  ->  (
( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) )  ->  S  e.  NN0 ) )
Distinct variable groups:    f, M    R, f    U, f    f, V   
f, Z
Allowed substitution hint:    S( f)

Proof of Theorem fsuppmapnn0fiublem
StepHypRef Expression
1 fsuppmapnn0fiub.u . . . 4  |-  U  = 
U_ f  e.  M  ( f supp  Z )
2 nfv 1843 . . . . . . 7  |-  F/ f ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )
3 nfra1 2941 . . . . . . . 8  |-  F/ f A. f  e.  M  f finSupp  Z
4 nfv 1843 . . . . . . . 8  |-  F/ f  U  =/=  (/)
53, 4nfan 1828 . . . . . . 7  |-  F/ f ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) )
62, 5nfan 1828 . . . . . 6  |-  F/ f ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )
7 suppssdm 7308 . . . . . . . 8  |-  ( f supp 
Z )  C_  dom  f
8 ssel2 3598 . . . . . . . . . . . . 13  |-  ( ( M  C_  ( R  ^m  NN0 )  /\  f  e.  M )  ->  f  e.  ( R  ^m  NN0 ) )
9 elmapfn 7880 . . . . . . . . . . . . 13  |-  ( f  e.  ( R  ^m  NN0 )  ->  f  Fn  NN0 )
10 fndm 5990 . . . . . . . . . . . . . 14  |-  ( f  Fn  NN0  ->  dom  f  =  NN0 )
11 eqimss 3657 . . . . . . . . . . . . . 14  |-  ( dom  f  =  NN0  ->  dom  f  C_  NN0 )
1210, 11syl 17 . . . . . . . . . . . . 13  |-  ( f  Fn  NN0  ->  dom  f  C_ 
NN0 )
138, 9, 123syl 18 . . . . . . . . . . . 12  |-  ( ( M  C_  ( R  ^m  NN0 )  /\  f  e.  M )  ->  dom  f  C_  NN0 )
1413ex 450 . . . . . . . . . . 11  |-  ( M 
C_  ( R  ^m  NN0 )  ->  ( f  e.  M  ->  dom  f  C_ 
NN0 ) )
15143ad2ant1 1082 . . . . . . . . . 10  |-  ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  ->  (
f  e.  M  ->  dom  f  C_  NN0 )
)
1615adantr 481 . . . . . . . . 9  |-  ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  ->  (
f  e.  M  ->  dom  f  C_  NN0 )
)
1716imp 445 . . . . . . . 8  |-  ( ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  /\  f  e.  M )  ->  dom  f  C_  NN0 )
187, 17syl5ss 3614 . . . . . . 7  |-  ( ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  /\  f  e.  M )  ->  ( f supp  Z ) 
C_  NN0 )
1918ex 450 . . . . . 6  |-  ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  ->  (
f  e.  M  -> 
( f supp  Z ) 
C_  NN0 ) )
206, 19ralrimi 2957 . . . . 5  |-  ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  ->  A. f  e.  M  ( f supp  Z )  C_  NN0 )
21 iunss 4561 . . . . 5  |-  ( U_ f  e.  M  (
f supp  Z )  C_  NN0  <->  A. f  e.  M  ( f supp  Z )  C_  NN0 )
2220, 21sylibr 224 . . . 4  |-  ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  ->  U_ f  e.  M  ( f supp  Z )  C_  NN0 )
231, 22syl5eqss 3649 . . 3  |-  ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  ->  U  C_ 
NN0 )
24 ltso 10118 . . . . 5  |-  <  Or  RR
2524a1i 11 . . . 4  |-  ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  ->  <  Or  RR )
26 simp2 1062 . . . . . 6  |-  ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  ->  M  e.  Fin )
27 id 22 . . . . . . . . 9  |-  ( f finSupp  Z  ->  f finSupp  Z )
2827fsuppimpd 8282 . . . . . . . 8  |-  ( f finSupp  Z  ->  ( f supp  Z
)  e.  Fin )
2928ralimi 2952 . . . . . . 7  |-  ( A. f  e.  M  f finSupp  Z  ->  A. f  e.  M  ( f supp  Z )  e.  Fin )
3029adantr 481 . . . . . 6  |-  ( ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) )  ->  A. f  e.  M  ( f supp  Z )  e.  Fin )
31 iunfi 8254 . . . . . 6  |-  ( ( M  e.  Fin  /\  A. f  e.  M  ( f supp  Z )  e. 
Fin )  ->  U_ f  e.  M  ( f supp  Z )  e.  Fin )
3226, 30, 31syl2an 494 . . . . 5  |-  ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  ->  U_ f  e.  M  ( f supp  Z )  e.  Fin )
331, 32syl5eqel 2705 . . . 4  |-  ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  ->  U  e.  Fin )
34 simprr 796 . . . 4  |-  ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  ->  U  =/=  (/) )
358, 9, 103syl 18 . . . . . . . . . . . . 13  |-  ( ( M  C_  ( R  ^m  NN0 )  /\  f  e.  M )  ->  dom  f  =  NN0 )
3635ex 450 . . . . . . . . . . . 12  |-  ( M 
C_  ( R  ^m  NN0 )  ->  ( f  e.  M  ->  dom  f  =  NN0 ) )
37363ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  ->  (
f  e.  M  ->  dom  f  =  NN0 ) )
3837adantr 481 . . . . . . . . . 10  |-  ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  ->  (
f  e.  M  ->  dom  f  =  NN0 ) )
3938imp 445 . . . . . . . . 9  |-  ( ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  /\  f  e.  M )  ->  dom  f  =  NN0 )
40 nn0ssre 11296 . . . . . . . . 9  |-  NN0  C_  RR
4139, 40syl6eqss 3655 . . . . . . . 8  |-  ( ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  /\  f  e.  M )  ->  dom  f  C_  RR )
427, 41syl5ss 3614 . . . . . . 7  |-  ( ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  /\  f  e.  M )  ->  ( f supp  Z ) 
C_  RR )
4342ex 450 . . . . . 6  |-  ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  ->  (
f  e.  M  -> 
( f supp  Z ) 
C_  RR ) )
446, 43ralrimi 2957 . . . . 5  |-  ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  ->  A. f  e.  M  ( f supp  Z )  C_  RR )
451sseq1i 3629 . . . . . 6  |-  ( U 
C_  RR  <->  U_ f  e.  M  ( f supp  Z )  C_  RR )
46 iunss 4561 . . . . . 6  |-  ( U_ f  e.  M  (
f supp  Z )  C_  RR  <->  A. f  e.  M  ( f supp  Z )  C_  RR )
4745, 46bitri 264 . . . . 5  |-  ( U 
C_  RR  <->  A. f  e.  M  ( f supp  Z )  C_  RR )
4844, 47sylibr 224 . . . 4  |-  ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  ->  U  C_  RR )
49 fsuppmapnn0fiub.s . . . . 5  |-  S  =  sup ( U ,  RR ,  <  )
50 fisupcl 8375 . . . . 5  |-  ( (  <  Or  RR  /\  ( U  e.  Fin  /\  U  =/=  (/)  /\  U  C_  RR ) )  ->  sup ( U ,  RR ,  <  )  e.  U
)
5149, 50syl5eqel 2705 . . . 4  |-  ( (  <  Or  RR  /\  ( U  e.  Fin  /\  U  =/=  (/)  /\  U  C_  RR ) )  ->  S  e.  U )
5225, 33, 34, 48, 51syl13anc 1328 . . 3  |-  ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  ->  S  e.  U )
5323, 52sseldd 3604 . 2  |-  ( ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  /\  ( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) ) )  ->  S  e.  NN0 )
5453ex 450 1  |-  ( ( M  C_  ( R  ^m  NN0 )  /\  M  e.  Fin  /\  Z  e.  V )  ->  (
( A. f  e.  M  f finSupp  Z  /\  U  =/=  (/) )  ->  S  e.  NN0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   U_ciun 4520   class class class wbr 4653    Or wor 5034   dom cdm 5114    Fn wfn 5883  (class class class)co 6650   supp csupp 7295    ^m cmap 7857   Fincfn 7955   finSupp cfsupp 8275   supcsup 8346   RRcr 9935    < clt 10074   NN0cn0 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-nn 11021  df-n0 11293
This theorem is referenced by:  fsuppmapnn0fiub  12790  fsuppmapnn0fiubOLD  12791  fsuppmapnn0fiubex  12792
  Copyright terms: Public domain W3C validator