Proof of Theorem lincresunit3lem2
| Step | Hyp | Ref
| Expression |
| 1 | | simpl2 1065 |
. . 3
       
   
finSupp    |
| 2 | | lincresunit.e |
. . . . . . . . . 10
     |
| 3 | | lincresunit.r |
. . . . . . . . . . 11
Scalar   |
| 4 | 3 | fveq2i 6194 |
. . . . . . . . . 10
       Scalar    |
| 5 | 2, 4 | eqtri 2644 |
. . . . . . . . 9
   Scalar    |
| 6 | 5 | oveq1i 6660 |
. . . . . . . 8
      Scalar     |
| 7 | 6 | eleq2i 2693 |
. . . . . . 7
  
    Scalar      |
| 8 | 7 | biimpi 206 |
. . . . . 6
       Scalar      |
| 9 | 8 | 3ad2ant1 1082 |
. . . . 5
        finSupp
    Scalar      |
| 10 | 9 | adantl 482 |
. . . 4
       
   
finSupp      Scalar      |
| 11 | | difssd 3738 |
. . . 4
       
   
finSupp        |
| 12 | | elmapssres 7882 |
. . . 4
      Scalar   
               Scalar   
      |
| 13 | 10, 11, 12 | syl2anc 693 |
. . 3
       
   
finSupp   
        Scalar   
      |
| 14 | | elpwi 4168 |
. . . . . . . 8
            |
| 15 | 14 | ssdifssd 3748 |
. . . . . . 7
         
      |
| 16 | | difexg 4808 |
. . . . . . . 8
            |
| 17 | | elpwg 4166 |
. . . . . . . 8
                          |
| 18 | 16, 17 | syl 17 |
. . . . . . 7
                           |
| 19 | 15, 18 | mpbird 247 |
. . . . . 6
                 |
| 20 | | lincresunit.b |
. . . . . . 7
     |
| 21 | 20 | pweqi 4162 |
. . . . . 6
       |
| 22 | 19, 21 | eleq2s 2719 |
. . . . 5
             |
| 23 | 22 | 3ad2ant1 1082 |
. . . 4
  
            |
| 24 | 23 | adantr 481 |
. . 3
       
   
finSupp             |
| 25 | | lincval 42198 |
. . 3
            Scalar  
                       linC          g                            |
| 26 | 1, 13, 24, 25 | syl3anc 1326 |
. 2
       
   
finSupp          linC          g                            |
| 27 | | simpll 790 |
. . . . . 6
    
 
     
finSupp            |
| 28 | | simplr1 1103 |
. . . . . 6
    
 
     
finSupp      
    |
| 29 | | simplr2 1104 |
. . . . . 6
    
 
     
finSupp             |
| 30 | | simpr 477 |
. . . . . 6
    
 
     
finSupp             |
| 31 | | lincresunit.u |
. . . . . . 7
Unit   |
| 32 | | lincresunit.0 |
. . . . . . 7
     |
| 33 | | lincresunit.z |
. . . . . . 7
     |
| 34 | | lincresunit.n |
. . . . . . 7
      |
| 35 | | lincresunit.i |
. . . . . . 7
     |
| 36 | | lincresunit.t |
. . . . . . 7
     |
| 37 | | lincresunit.g |
. . . . . . 7
                         |
| 38 | 20, 3, 2, 31, 32, 33, 34, 35, 36, 37 | lincresunit3lem1 42268 |
. . . . . 6
       
   
                                                |
| 39 | 27, 28, 29, 30, 38 | syl13anc 1328 |
. . . . 5
    
 
     
finSupp                                                 |
| 40 | | fvres 6207 |
. . . . . . . 8
       
             |
| 41 | 40 | adantl 482 |
. . . . . . 7
    
 
     
finSupp         
             |
| 42 | 41 | eqcomd 2628 |
. . . . . 6
    
 
     
finSupp            
          |
| 43 | 42 | oveq1d 6665 |
. . . . 5
    
 
     
finSupp                                       |
| 44 | 39, 43 | eqtrd 2656 |
. . . 4
    
 
     
finSupp                                     
                 |
| 45 | 44 | mpteq2dva 4744 |
. . 3
       
   
finSupp                                                              |
| 46 | 45 | oveq2d 6666 |
. 2
       
   
finSupp   g                                     g                            |
| 47 | | eqid 2622 |
. . 3
       |
| 48 | | eqid 2622 |
. . 3
         |
| 49 | | difexg 4808 |
. . . . 5
        |
| 50 | 49 | 3ad2ant1 1082 |
. . . 4
  
       |
| 51 | 50 | adantr 481 |
. . 3
       
   
finSupp        |
| 52 | 3 | lmodfgrp 18872 |
. . . . . . 7

  |
| 53 | 52 | 3ad2ant2 1083 |
. . . . . 6
  
   |
| 54 | 53 | adantr 481 |
. . . . 5
       
  |
| 55 | | elmapi 7879 |
. . . . . . 7
         |
| 56 | | ffvelrn 6357 |
. . . . . . . . 9
     
       |
| 57 | 56 | expcom 451 |
. . . . . . . 8
             |
| 58 | 57 | 3ad2ant3 1084 |
. . . . . . 7
  
     
       |
| 59 | 55, 58 | syl5com 31 |
. . . . . 6
              |
| 60 | 59 | impcom 446 |
. . . . 5
       
      |
| 61 | 2, 34 | grpinvcl 17467 |
. . . . 5
                 |
| 62 | 54, 60, 61 | syl2anc 693 |
. . . 4
       
          |
| 63 | 62 | 3ad2antr1 1226 |
. . 3
       
   
finSupp            |
| 64 | 1 | adantr 481 |
. . . 4
    
 
     
finSupp      
  |
| 65 | 20, 3, 2, 31, 32, 33, 34, 35, 36, 37 | lincresunit1 42266 |
. . . . . . 7
       
              |
| 66 | 65 | 3adantr3 1222 |
. . . . . 6
       
   
finSupp          |
| 67 | | elmapi 7879 |
. . . . . 6
  
              |
| 68 | | ffvelrn 6357 |
. . . . . . 7
                     |
| 69 | 68 | ex 450 |
. . . . . 6
                     |
| 70 | 66, 67, 69 | 3syl 18 |
. . . . 5
       
   
finSupp              |
| 71 | 70 | imp 445 |
. . . 4
    
 
     
finSupp             |
| 72 | | elpwi 4168 |
. . . . . . . 8
    |
| 73 | | eldifi 3732 |
. . . . . . . . 9
       |
| 74 | | ssel2 3598 |
. . . . . . . . . 10
 
   |
| 75 | 74 | expcom 451 |
. . . . . . . . 9
     |
| 76 | 73, 75 | syl 17 |
. . . . . . . 8
         |
| 77 | 72, 76 | syl5com 31 |
. . . . . . 7
          |
| 78 | 77 | 3ad2ant1 1082 |
. . . . . 6
  
         |
| 79 | 78 | adantr 481 |
. . . . 5
       
   
finSupp          |
| 80 | 79 | imp 445 |
. . . 4
    
 
     
finSupp         |
| 81 | 20, 3, 48, 2 | lmodvscl 18880 |
. . . 4
     
               |
| 82 | 64, 71, 80, 81 | syl3anc 1326 |
. . 3
    
 
     
finSupp                     |
| 83 | | simp2 1062 |
. . . . . 6
  
   |
| 84 | 83, 23 | jca 554 |
. . . . 5
  
              |
| 85 | 84 | adantr 481 |
. . . 4
       
   
finSupp               |
| 86 | 20, 3, 2, 31, 32, 33, 34, 35, 36, 37 | lincresunit2 42267 |
. . . . 5
       
   
finSupp 
finSupp  |
| 87 | 86, 32 | syl6breq 4694 |
. . . 4
       
   
finSupp 
finSupp       |
| 88 | 3, 2 | scmfsupp 42159 |
. . . . 5
            

     finSupp     
                  finSupp       |
| 89 | 88, 33 | syl6breqr 4695 |
. . . 4
            

     finSupp     
                  finSupp   |
| 90 | 85, 66, 87, 89 | syl3anc 1326 |
. . 3
       
   
finSupp                    finSupp   |
| 91 | 20, 3, 2, 33, 47, 48, 1, 51, 63, 82, 90 | gsumvsmul 18927 |
. 2
       
   
finSupp   g                                                    g                       |
| 92 | 26, 46, 91 | 3eqtr2rd 2663 |
1
       
   
finSupp                  g                             linC           |