MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumfsum Structured version   Visualization version   Unicode version

Theorem gsumfsum 19813
Description: Relate a group sum on ℂfld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
gsumfsum.1  |-  ( ph  ->  A  e.  Fin )
gsumfsum.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
gsumfsum  |-  ( ph  ->  (fld 
gsumg  ( k  e.  A  |->  B ) )  = 
sum_ k  e.  A  B )
Distinct variable groups:    A, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem gsumfsum
Dummy variables  f  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpteq1 4737 . . . . . . 7  |-  ( A  =  (/)  ->  ( k  e.  A  |->  B )  =  ( k  e.  (/)  |->  B ) )
2 mpt0 6021 . . . . . . 7  |-  ( k  e.  (/)  |->  B )  =  (/)
31, 2syl6eq 2672 . . . . . 6  |-  ( A  =  (/)  ->  ( k  e.  A  |->  B )  =  (/) )
43oveq2d 6666 . . . . 5  |-  ( A  =  (/)  ->  (fld  gsumg  ( k  e.  A  |->  B ) )  =  (fld 
gsumg  (/) ) )
5 cnfld0 19770 . . . . . . 7  |-  0  =  ( 0g ` fld )
65gsum0 17278 . . . . . 6  |-  (fld  gsumg  (/) )  =  0
7 sum0 14452 . . . . . 6  |-  sum_ k  e.  (/)  B  =  0
86, 7eqtr4i 2647 . . . . 5  |-  (fld  gsumg  (/) )  =  sum_ k  e.  (/)  B
94, 8syl6eq 2672 . . . 4  |-  ( A  =  (/)  ->  (fld  gsumg  ( k  e.  A  |->  B ) )  = 
sum_ k  e.  (/)  B )
10 sumeq1 14419 . . . 4  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
119, 10eqtr4d 2659 . . 3  |-  ( A  =  (/)  ->  (fld  gsumg  ( k  e.  A  |->  B ) )  = 
sum_ k  e.  A  B )
1211a1i 11 . 2  |-  ( ph  ->  ( A  =  (/)  ->  (fld 
gsumg  ( k  e.  A  |->  B ) )  = 
sum_ k  e.  A  B ) )
13 cnfldbas 19750 . . . . . . 7  |-  CC  =  ( Base ` fld )
14 cnfldadd 19751 . . . . . . 7  |-  +  =  ( +g  ` fld )
15 eqid 2622 . . . . . . 7  |-  (Cntz ` fld )  =  (Cntz ` fld )
16 cnring 19768 . . . . . . . 8  |-fld  e.  Ring
17 ringmnd 18556 . . . . . . . 8  |-  (fld  e.  Ring  ->fld  e.  Mnd )
1816, 17mp1i 13 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->fld  e.  Mnd )
19 gsumfsum.1 . . . . . . . 8  |-  ( ph  ->  A  e.  Fin )
2019adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  A  e.  Fin )
21 gsumfsum.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
22 eqid 2622 . . . . . . . . 9  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
2321, 22fmptd 6385 . . . . . . . 8  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
2423adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  B ) : A --> CC )
25 ringcmn 18581 . . . . . . . . 9  |-  (fld  e.  Ring  ->fld  e. CMnd )
2616, 25mp1i 13 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->fld  e. CMnd )
2713, 15, 26, 24cntzcmnf 18248 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ran  ( k  e.  A  |->  B )  C_  (
(Cntz ` fld ) `  ran  (
k  e.  A  |->  B ) ) )
28 simprl 794 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  NN )
29 simprr 796 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
30 f1of1 6136 . . . . . . . 8  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) )
-1-1-> A )
3129, 30syl 17 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) -1-1-> A )
32 suppssdm 7308 . . . . . . . . 9  |-  ( ( k  e.  A  |->  B ) supp  0 )  C_  dom  ( k  e.  A  |->  B )
33 fdm 6051 . . . . . . . . . 10  |-  ( ( k  e.  A  |->  B ) : A --> CC  ->  dom  ( k  e.  A  |->  B )  =  A )
3424, 33syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  dom  ( k  e.  A  |->  B )  =  A )
3532, 34syl5sseq 3653 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
( k  e.  A  |->  B ) supp  0 ) 
C_  A )
36 f1ofo 6144 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) )
-onto-> A )
37 forn 6118 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  A
) ) -onto-> A  ->  ran  f  =  A
)
3829, 36, 373syl 18 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ran  f  =  A )
3935, 38sseqtr4d 3642 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
( k  e.  A  |->  B ) supp  0 ) 
C_  ran  f )
40 eqid 2622 . . . . . . 7  |-  ( ( ( k  e.  A  |->  B )  o.  f
) supp  0 )  =  ( ( ( k  e.  A  |->  B )  o.  f ) supp  0
)
4113, 5, 14, 15, 18, 20, 24, 27, 28, 31, 39, 40gsumval3 18308 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (fld  gsumg  ( k  e.  A  |->  B ) )  =  (  seq 1 (  +  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `  ( # `  A ) ) )
42 sumfc 14440 . . . . . . 7  |-  sum_ x  e.  A  ( (
k  e.  A  |->  B ) `  x )  =  sum_ k  e.  A  B
43 fveq2 6191 . . . . . . . 8  |-  ( x  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  x
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
4424ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  A )  ->  ( ( k  e.  A  |->  B ) `  x )  e.  CC )
45 f1of 6137 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) ) --> A )
4629, 45syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) --> A )
47 fvco3 6275 . . . . . . . . 9  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
4846, 47sylan 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
4943, 28, 29, 44, 48fsum 14451 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ x  e.  A  ( (
k  e.  A  |->  B ) `  x )  =  (  seq 1
(  +  ,  ( ( k  e.  A  |->  B )  o.  f
) ) `  ( # `
 A ) ) )
5042, 49syl5eqr 2670 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ k  e.  A  B  =  (  seq 1 (  +  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `
 ( # `  A
) ) )
5141, 50eqtr4d 2659 . . . . 5  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (fld  gsumg  ( k  e.  A  |->  B ) )  = 
sum_ k  e.  A  B )
5251expr 643 . . . 4  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  ->  (fld 
gsumg  ( k  e.  A  |->  B ) )  = 
sum_ k  e.  A  B ) )
5352exlimdv 1861 . . 3  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  (fld  gsumg  ( k  e.  A  |->  B ) )  = 
sum_ k  e.  A  B ) )
5453expimpd 629 . 2  |-  ( ph  ->  ( ( ( # `  A )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  (fld  gsumg  ( k  e.  A  |->  B ) )  = 
sum_ k  e.  A  B ) )
55 fz1f1o 14441 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
5619, 55syl 17 . 2  |-  ( ph  ->  ( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
5712, 54, 56mpjaod 396 1  |-  ( ph  ->  (fld 
gsumg  ( k  e.  A  |->  B ) )  = 
sum_ k  e.  A  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   (/)c0 3915    |-> cmpt 4729   dom cdm 5114   ran crn 5115    o. ccom 5118   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   supp csupp 7295   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939   NNcn 11020   ...cfz 12326    seqcseq 12801   #chash 13117   sum_csu 14416    gsumg cgsu 16101   Mndcmnd 17294  Cntzccntz 17748  CMndccmn 18193   Ringcrg 18547  ℂfldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-cnfld 19747
This theorem is referenced by:  regsumfsum  19814  regsumsupp  19968  plypf1  23968  taylpfval  24119  jensen  24715  amgmlem  24716  lgseisenlem4  25103  esumpfinval  30137  esumpfinvalf  30138  esumpcvgval  30140  esumcvg  30148  sge0tsms  40597  aacllem  42547  amgmwlem  42548  amgmlemALT  42549
  Copyright terms: Public domain W3C validator