HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhcno Structured version   Visualization version   Unicode version

Theorem hhcno 28763
Description: The continuous operators of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhcn.1  |-  D  =  ( normh  o.  -h  )
hhcn.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
hhcno  |-  ContOp  =  ( J  Cn  J )

Proof of Theorem hhcno
Dummy variables  x  w  y  z  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2921 . 2  |-  { t  e.  ( ~H  ^m  ~H )  |  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y ) }  =  { t  |  ( t  e.  ( ~H 
^m  ~H )  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y ) ) }
2 df-cnop 28699 . 2  |-  ContOp  =  {
t  e.  ( ~H 
^m  ~H )  |  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y ) }
3 hhcn.1 . . . . . . . . . . . . . 14  |-  D  =  ( normh  o.  -h  )
43hilmetdval 28053 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  w  e.  ~H )  ->  ( x D w )  =  ( normh `  ( x  -h  w
) ) )
5 normsub 28000 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~H  /\  w  e.  ~H )  ->  ( normh `  ( x  -h  w ) )  =  ( normh `  ( w  -h  x ) ) )
64, 5eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  w  e.  ~H )  ->  ( x D w )  =  ( normh `  ( w  -h  x
) ) )
76adantll 750 . . . . . . . . . . 11  |-  ( ( ( t : ~H --> ~H  /\  x  e.  ~H )  /\  w  e.  ~H )  ->  ( x D w )  =  (
normh `  ( w  -h  x ) ) )
87breq1d 4663 . . . . . . . . . 10  |-  ( ( ( t : ~H --> ~H  /\  x  e.  ~H )  /\  w  e.  ~H )  ->  ( ( x D w )  < 
z  <->  ( normh `  (
w  -h  x ) )  <  z ) )
9 ffvelrn 6357 . . . . . . . . . . . . . 14  |-  ( ( t : ~H --> ~H  /\  x  e.  ~H )  ->  ( t `  x
)  e.  ~H )
10 ffvelrn 6357 . . . . . . . . . . . . . 14  |-  ( ( t : ~H --> ~H  /\  w  e.  ~H )  ->  ( t `  w
)  e.  ~H )
119, 10anim12dan 882 . . . . . . . . . . . . 13  |-  ( ( t : ~H --> ~H  /\  ( x  e.  ~H  /\  w  e.  ~H )
)  ->  ( (
t `  x )  e.  ~H  /\  ( t `
 w )  e. 
~H ) )
123hilmetdval 28053 . . . . . . . . . . . . . 14  |-  ( ( ( t `  x
)  e.  ~H  /\  ( t `  w
)  e.  ~H )  ->  ( ( t `  x ) D ( t `  w ) )  =  ( normh `  ( ( t `  x )  -h  (
t `  w )
) ) )
13 normsub 28000 . . . . . . . . . . . . . 14  |-  ( ( ( t `  x
)  e.  ~H  /\  ( t `  w
)  e.  ~H )  ->  ( normh `  ( (
t `  x )  -h  ( t `  w
) ) )  =  ( normh `  ( (
t `  w )  -h  ( t `  x
) ) ) )
1412, 13eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( t `  x
)  e.  ~H  /\  ( t `  w
)  e.  ~H )  ->  ( ( t `  x ) D ( t `  w ) )  =  ( normh `  ( ( t `  w )  -h  (
t `  x )
) ) )
1511, 14syl 17 . . . . . . . . . . . 12  |-  ( ( t : ~H --> ~H  /\  ( x  e.  ~H  /\  w  e.  ~H )
)  ->  ( (
t `  x ) D ( t `  w ) )  =  ( normh `  ( (
t `  w )  -h  ( t `  x
) ) ) )
1615anassrs 680 . . . . . . . . . . 11  |-  ( ( ( t : ~H --> ~H  /\  x  e.  ~H )  /\  w  e.  ~H )  ->  ( ( t `
 x ) D ( t `  w
) )  =  (
normh `  ( ( t `
 w )  -h  ( t `  x
) ) ) )
1716breq1d 4663 . . . . . . . . . 10  |-  ( ( ( t : ~H --> ~H  /\  x  e.  ~H )  /\  w  e.  ~H )  ->  ( ( ( t `  x ) D ( t `  w ) )  < 
y  <->  ( normh `  (
( t `  w
)  -h  ( t `
 x ) ) )  <  y ) )
188, 17imbi12d 334 . . . . . . . . 9  |-  ( ( ( t : ~H --> ~H  /\  x  e.  ~H )  /\  w  e.  ~H )  ->  ( ( ( x D w )  <  z  ->  (
( t `  x
) D ( t `
 w ) )  <  y )  <->  ( ( normh `  ( w  -h  x ) )  < 
z  ->  ( normh `  ( ( t `  w )  -h  (
t `  x )
) )  <  y
) ) )
1918ralbidva 2985 . . . . . . . 8  |-  ( ( t : ~H --> ~H  /\  x  e.  ~H )  ->  ( A. w  e. 
~H  ( ( x D w )  < 
z  ->  ( (
t `  x ) D ( t `  w ) )  < 
y )  <->  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y ) ) )
2019rexbidv 3052 . . . . . . 7  |-  ( ( t : ~H --> ~H  /\  x  e.  ~H )  ->  ( E. z  e.  RR+  A. w  e.  ~H  ( ( x D w )  <  z  ->  ( ( t `  x ) D ( t `  w ) )  <  y )  <->  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y ) ) )
2120ralbidv 2986 . . . . . 6  |-  ( ( t : ~H --> ~H  /\  x  e.  ~H )  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  (
( x D w )  <  z  -> 
( ( t `  x ) D ( t `  w ) )  <  y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e. 
~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y ) ) )
2221ralbidva 2985 . . . . 5  |-  ( t : ~H --> ~H  ->  ( A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e. 
~H  ( ( x D w )  < 
z  ->  ( (
t `  x ) D ( t `  w ) )  < 
y )  <->  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
z  ->  ( normh `  ( ( t `  w )  -h  (
t `  x )
) )  <  y
) ) )
2322pm5.32i 669 . . . 4  |-  ( ( t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e. 
~H  ( ( x D w )  < 
z  ->  ( (
t `  x ) D ( t `  w ) )  < 
y ) )  <->  ( t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
z  ->  ( normh `  ( ( t `  w )  -h  (
t `  x )
) )  <  y
) ) )
243hilxmet 28052 . . . . 5  |-  D  e.  ( *Met `  ~H )
25 hhcn.2 . . . . . 6  |-  J  =  ( MetOpen `  D )
2625, 25metcn 22348 . . . . 5  |-  ( ( D  e.  ( *Met `  ~H )  /\  D  e.  ( *Met `  ~H )
)  ->  ( t  e.  ( J  Cn  J
)  <->  ( t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  (
( x D w )  <  z  -> 
( ( t `  x ) D ( t `  w ) )  <  y ) ) ) )
2724, 24, 26mp2an 708 . . . 4  |-  ( t  e.  ( J  Cn  J )  <->  ( t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  (
( x D w )  <  z  -> 
( ( t `  x ) D ( t `  w ) )  <  y ) ) )
28 ax-hilex 27856 . . . . . 6  |-  ~H  e.  _V
2928, 28elmap 7886 . . . . 5  |-  ( t  e.  ( ~H  ^m  ~H )  <->  t : ~H --> ~H )
3029anbi1i 731 . . . 4  |-  ( ( t  e.  ( ~H 
^m  ~H )  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y ) )  <->  ( t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
z  ->  ( normh `  ( ( t `  w )  -h  (
t `  x )
) )  <  y
) ) )
3123, 27, 303bitr4i 292 . . 3  |-  ( t  e.  ( J  Cn  J )  <->  ( t  e.  ( ~H  ^m  ~H )  /\  A. x  e. 
~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y ) ) )
3231abbi2i 2738 . 2  |-  ( J  Cn  J )  =  { t  |  ( t  e.  ( ~H 
^m  ~H )  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y ) ) }
331, 2, 323eqtr4i 2654 1  |-  ContOp  =  ( J  Cn  J )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   {crab 2916   class class class wbr 4653    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857    < clt 10074   RR+crp 11832   *Metcxmt 19731   MetOpencmopn 19736    Cn ccn 21028   ~Hchil 27776   normhcno 27780    -h cmv 27782   ContOpccop 27803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-cnp 21032  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-hnorm 27825  df-hvsub 27828  df-cnop 28699
This theorem is referenced by:  hmopidmchi  29010
  Copyright terms: Public domain W3C validator