MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iexpcyc Structured version   Visualization version   Unicode version

Theorem iexpcyc 12969
Description: Taking  _i to the  K-th power is the same as using the  K  mod  4 -th power instead, by i4 12967. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
iexpcyc  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  mod  4 ) )  =  ( _i ^ K ) )

Proof of Theorem iexpcyc
StepHypRef Expression
1 zre 11381 . . . 4  |-  ( K  e.  ZZ  ->  K  e.  RR )
2 4re 11097 . . . . 5  |-  4  e.  RR
3 4pos 11116 . . . . 5  |-  0  <  4
42, 3elrpii 11835 . . . 4  |-  4  e.  RR+
5 modval 12670 . . . 4  |-  ( ( K  e.  RR  /\  4  e.  RR+ )  -> 
( K  mod  4
)  =  ( K  -  ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )
61, 4, 5sylancl 694 . . 3  |-  ( K  e.  ZZ  ->  ( K  mod  4 )  =  ( K  -  (
4  x.  ( |_
`  ( K  / 
4 ) ) ) ) )
76oveq2d 6666 . 2  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  mod  4 ) )  =  ( _i ^
( K  -  (
4  x.  ( |_
`  ( K  / 
4 ) ) ) ) ) )
8 4z 11411 . . . . 5  |-  4  e.  ZZ
9 4nn 11187 . . . . . . 7  |-  4  e.  NN
10 nndivre 11056 . . . . . . 7  |-  ( ( K  e.  RR  /\  4  e.  NN )  ->  ( K  /  4
)  e.  RR )
111, 9, 10sylancl 694 . . . . . 6  |-  ( K  e.  ZZ  ->  ( K  /  4 )  e.  RR )
1211flcld 12599 . . . . 5  |-  ( K  e.  ZZ  ->  ( |_ `  ( K  / 
4 ) )  e.  ZZ )
13 zmulcl 11426 . . . . 5  |-  ( ( 4  e.  ZZ  /\  ( |_ `  ( K  /  4 ) )  e.  ZZ )  -> 
( 4  x.  ( |_ `  ( K  / 
4 ) ) )  e.  ZZ )
148, 12, 13sylancr 695 . . . 4  |-  ( K  e.  ZZ  ->  (
4  x.  ( |_
`  ( K  / 
4 ) ) )  e.  ZZ )
15 ax-icn 9995 . . . . 5  |-  _i  e.  CC
16 ine0 10465 . . . . 5  |-  _i  =/=  0
17 expsub 12908 . . . . 5  |-  ( ( ( _i  e.  CC  /\  _i  =/=  0 )  /\  ( K  e.  ZZ  /\  ( 4  x.  ( |_ `  ( K  /  4
) ) )  e.  ZZ ) )  -> 
( _i ^ ( K  -  ( 4  x.  ( |_ `  ( K  /  4
) ) ) ) )  =  ( ( _i ^ K )  /  ( _i ^
( 4  x.  ( |_ `  ( K  / 
4 ) ) ) ) ) )
1815, 16, 17mpanl12 718 . . . 4  |-  ( ( K  e.  ZZ  /\  ( 4  x.  ( |_ `  ( K  / 
4 ) ) )  e.  ZZ )  -> 
( _i ^ ( K  -  ( 4  x.  ( |_ `  ( K  /  4
) ) ) ) )  =  ( ( _i ^ K )  /  ( _i ^
( 4  x.  ( |_ `  ( K  / 
4 ) ) ) ) ) )
1914, 18mpdan 702 . . 3  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  -  ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )  =  ( ( _i ^ K )  /  (
_i ^ ( 4  x.  ( |_ `  ( K  /  4
) ) ) ) ) )
20 expmulz 12906 . . . . . . . 8  |-  ( ( ( _i  e.  CC  /\  _i  =/=  0 )  /\  ( 4  e.  ZZ  /\  ( |_
`  ( K  / 
4 ) )  e.  ZZ ) )  -> 
( _i ^ (
4  x.  ( |_
`  ( K  / 
4 ) ) ) )  =  ( ( _i ^ 4 ) ^ ( |_ `  ( K  /  4
) ) ) )
2115, 16, 20mpanl12 718 . . . . . . 7  |-  ( ( 4  e.  ZZ  /\  ( |_ `  ( K  /  4 ) )  e.  ZZ )  -> 
( _i ^ (
4  x.  ( |_
`  ( K  / 
4 ) ) ) )  =  ( ( _i ^ 4 ) ^ ( |_ `  ( K  /  4
) ) ) )
228, 12, 21sylancr 695 . . . . . 6  |-  ( K  e.  ZZ  ->  (
_i ^ ( 4  x.  ( |_ `  ( K  /  4
) ) ) )  =  ( ( _i
^ 4 ) ^
( |_ `  ( K  /  4 ) ) ) )
23 i4 12967 . . . . . . . 8  |-  ( _i
^ 4 )  =  1
2423oveq1i 6660 . . . . . . 7  |-  ( ( _i ^ 4 ) ^ ( |_ `  ( K  /  4
) ) )  =  ( 1 ^ ( |_ `  ( K  / 
4 ) ) )
25 1exp 12889 . . . . . . . 8  |-  ( ( |_ `  ( K  /  4 ) )  e.  ZZ  ->  (
1 ^ ( |_
`  ( K  / 
4 ) ) )  =  1 )
2612, 25syl 17 . . . . . . 7  |-  ( K  e.  ZZ  ->  (
1 ^ ( |_
`  ( K  / 
4 ) ) )  =  1 )
2724, 26syl5eq 2668 . . . . . 6  |-  ( K  e.  ZZ  ->  (
( _i ^ 4 ) ^ ( |_
`  ( K  / 
4 ) ) )  =  1 )
2822, 27eqtrd 2656 . . . . 5  |-  ( K  e.  ZZ  ->  (
_i ^ ( 4  x.  ( |_ `  ( K  /  4
) ) ) )  =  1 )
2928oveq2d 6666 . . . 4  |-  ( K  e.  ZZ  ->  (
( _i ^ K
)  /  ( _i
^ ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )  =  ( ( _i ^ K )  /  1
) )
30 expclz 12885 . . . . . 6  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  K  e.  ZZ )  ->  (
_i ^ K )  e.  CC )
3115, 16, 30mp3an12 1414 . . . . 5  |-  ( K  e.  ZZ  ->  (
_i ^ K )  e.  CC )
3231div1d 10793 . . . 4  |-  ( K  e.  ZZ  ->  (
( _i ^ K
)  /  1 )  =  ( _i ^ K ) )
3329, 32eqtrd 2656 . . 3  |-  ( K  e.  ZZ  ->  (
( _i ^ K
)  /  ( _i
^ ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )  =  ( _i ^ K
) )
3419, 33eqtrd 2656 . 2  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  -  ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )  =  ( _i ^ K
) )
357, 34eqtrd 2656 1  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  mod  4 ) )  =  ( _i ^ K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   _ici 9938    x. cmul 9941    - cmin 10266    / cdiv 10684   NNcn 11020   4c4 11072   ZZcz 11377   RR+crp 11832   |_cfl 12591    mod cmo 12668   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861
This theorem is referenced by:  iblitg  23535
  Copyright terms: Public domain W3C validator