Proof of Theorem expmulz
| Step | Hyp | Ref
| Expression |
| 1 | | elznn0nn 11391 |
. . 3

       |
| 2 | | elznn0nn 11391 |
. . . 4

       |
| 3 | | expmul 12905 |
. . . . . . . 8
 
                 |
| 4 | 3 | 3expia 1267 |
. . . . . . 7
 
     
             |
| 5 | 4 | adantlr 751 |
. . . . . 6
                       |
| 6 | | simp2l 1087 |
. . . . . . . . . . . . . 14
          |
| 7 | 6 | recnd 10068 |
. . . . . . . . . . . . 13
          |
| 8 | | simp3 1063 |
. . . . . . . . . . . . . 14
          |
| 9 | 8 | nn0cnd 11353 |
. . . . . . . . . . . . 13
          |
| 10 | 7, 9 | mulneg1d 10483 |
. . . . . . . . . . . 12
                |
| 11 | 10 | oveq2d 6666 |
. . . . . . . . . . 11
                   
    |
| 12 | | simp1l 1085 |
. . . . . . . . . . . 12
          |
| 13 | | simp2r 1088 |
. . . . . . . . . . . . 13
           |
| 14 | 13 | nnnn0d 11351 |
. . . . . . . . . . . 12
           |
| 15 | | expmul 12905 |
. . . . . . . . . . . 12
  
                   |
| 16 | 12, 14, 8, 15 | syl3anc 1326 |
. . . . . . . . . . 11
                          |
| 17 | 11, 16 | eqtr3d 2658 |
. . . . . . . . . 10
                          |
| 18 | 17 | oveq2d 6666 |
. . . . . . . . 9
                              |
| 19 | | expcl 12878 |
. . . . . . . . . . 11
           |
| 20 | 12, 14, 19 | syl2anc 693 |
. . . . . . . . . 10
               |
| 21 | | simp1r 1086 |
. . . . . . . . . . 11
          |
| 22 | 13 | nnzd 11481 |
. . . . . . . . . . 11
           |
| 23 | | expne0i 12892 |
. . . . . . . . . . 11
           |
| 24 | 12, 21, 22, 23 | syl3anc 1326 |
. . . . . . . . . 10
               |
| 25 | 8 | nn0zd 11480 |
. . . . . . . . . 10
          |
| 26 | | exprec 12901 |
. . . . . . . . . 10
                                     |
| 27 | 20, 24, 25, 26 | syl3anc 1326 |
. . . . . . . . 9
                                |
| 28 | 18, 27 | eqtr4d 2659 |
. . . . . . . 8
                              |
| 29 | 7, 9 | mulcld 10060 |
. . . . . . . . 9
        
   |
| 30 | 14, 8 | nn0mulcld 11356 |
. . . . . . . . . 10
             |
| 31 | 10, 30 | eqeltrrd 2702 |
. . . . . . . . 9
         
   |
| 32 | | expneg2 12869 |
. . . . . . . . 9
  
        
             |
| 33 | 12, 29, 31, 32 | syl3anc 1326 |
. . . . . . . 8
                         |
| 34 | | expneg2 12869 |
. . . . . . . . . 10
 
               |
| 35 | 12, 7, 14, 34 | syl3anc 1326 |
. . . . . . . . 9
                     |
| 36 | 35 | oveq1d 6665 |
. . . . . . . 8
                             |
| 37 | 28, 33, 36 | 3eqtr4d 2666 |
. . . . . . 7
                        |
| 38 | 37 | 3expia 1267 |
. . . . . 6
            
             |
| 39 | 5, 38 | jaodan 826 |
. . . . 5
    
                       |
| 40 | | simp2 1062 |
. . . . . . . . . . . . 13
     
    |
| 41 | 40 | nn0cnd 11353 |
. . . . . . . . . . . 12
     
    |
| 42 | | simp3l 1089 |
. . . . . . . . . . . . 13
     
    |
| 43 | 42 | recnd 10068 |
. . . . . . . . . . . 12
     
    |
| 44 | 41, 43 | mulneg2d 10484 |
. . . . . . . . . . 11
     
  
       |
| 45 | 44 | oveq2d 6666 |
. . . . . . . . . 10
     
             
    |
| 46 | | simp1l 1085 |
. . . . . . . . . . 11
     
    |
| 47 | | simp3r 1090 |
. . . . . . . . . . . 12
     
     |
| 48 | 47 | nnnn0d 11351 |
. . . . . . . . . . 11
     
     |
| 49 | | expmul 12905 |
. . . . . . . . . . 11
 
                    |
| 50 | 46, 40, 48, 49 | syl3anc 1326 |
. . . . . . . . . 10
     
                    |
| 51 | 45, 50 | eqtr3d 2658 |
. . . . . . . . 9
     
                    |
| 52 | 51 | oveq2d 6666 |
. . . . . . . 8
     
                        |
| 53 | 41, 43 | mulcld 10060 |
. . . . . . . . 9
     
  
   |
| 54 | 40, 48 | nn0mulcld 11356 |
. . . . . . . . . 10
     
  
    |
| 55 | 44, 54 | eqeltrrd 2702 |
. . . . . . . . 9
     
   
   |
| 56 | 46, 53, 55, 32 | syl3anc 1326 |
. . . . . . . 8
     
                   |
| 57 | | expcl 12878 |
. . . . . . . . . 10
 
       |
| 58 | 46, 40, 57 | syl2anc 693 |
. . . . . . . . 9
     
        |
| 59 | | expneg2 12869 |
. . . . . . . . 9
     
                       |
| 60 | 58, 43, 48, 59 | syl3anc 1326 |
. . . . . . . 8
     
                       |
| 61 | 52, 56, 60 | 3eqtr4d 2666 |
. . . . . . 7
     
                  |
| 62 | 61 | 3expia 1267 |
. . . . . 6
                          |
| 63 | | simp1l 1085 |
. . . . . . . . . 10
       
  
  |
| 64 | | simp2l 1087 |
. . . . . . . . . . 11
       
  
  |
| 65 | 64 | recnd 10068 |
. . . . . . . . . 10
       
  
  |
| 66 | | simp2r 1088 |
. . . . . . . . . . 11
       
      |
| 67 | 66 | nnnn0d 11351 |
. . . . . . . . . 10
       
      |
| 68 | 63, 65, 67, 34 | syl3anc 1326 |
. . . . . . . . 9
       
                |
| 69 | 68 | oveq1d 6665 |
. . . . . . . 8
       
                        |
| 70 | 63, 67, 19 | syl2anc 693 |
. . . . . . . . . 10
       
          |
| 71 | | simp1r 1086 |
. . . . . . . . . . 11
       
     |
| 72 | 66 | nnzd 11481 |
. . . . . . . . . . 11
       
      |
| 73 | 63, 71, 72, 23 | syl3anc 1326 |
. . . . . . . . . 10
       
          |
| 74 | 70, 73 | reccld 10794 |
. . . . . . . . 9
       
            |
| 75 | | simp3l 1089 |
. . . . . . . . . 10
       
  
  |
| 76 | 75 | recnd 10068 |
. . . . . . . . 9
       
  
  |
| 77 | | simp3r 1090 |
. . . . . . . . . 10
       
      |
| 78 | 77 | nnnn0d 11351 |
. . . . . . . . 9
       
      |
| 79 | | expneg2 12869 |
. . . . . . . . 9
        
                             |
| 80 | 74, 76, 78, 79 | syl3anc 1326 |
. . . . . . . 8
       
                              |
| 81 | 77 | nnzd 11481 |
. . . . . . . . . . 11
       
      |
| 82 | | exprec 12901 |
. . . . . . . . . . 11
            
                           |
| 83 | 70, 73, 81, 82 | syl3anc 1326 |
. . . . . . . . . 10
       
                             |
| 84 | 83 | oveq2d 6666 |
. . . . . . . . 9
       
                                 |
| 85 | | expcl 12878 |
. . . . . . . . . . 11
                     |
| 86 | 70, 78, 85 | syl2anc 693 |
. . . . . . . . . 10
       
               |
| 87 | | expne0i 12892 |
. . . . . . . . . . 11
            
             |
| 88 | 70, 73, 81, 87 | syl3anc 1326 |
. . . . . . . . . 10
       
               |
| 89 | 86, 88 | recrecd 10798 |
. . . . . . . . 9
       
                             |
| 90 | | expmul 12905 |
. . . . . . . . . . 11
                         |
| 91 | 63, 67, 78, 90 | syl3anc 1326 |
. . . . . . . . . 10
       
                       |
| 92 | 65, 76 | mul2negd 10485 |
. . . . . . . . . . 11
       
           |
| 93 | 92 | oveq2d 6666 |
. . . . . . . . . 10
       
                   |
| 94 | 91, 93 | eqtr3d 2658 |
. . . . . . . . 9
       
                     |
| 95 | 84, 89, 94 | 3eqtrd 2660 |
. . . . . . . 8
       
                         |
| 96 | 69, 80, 95 | 3eqtrrd 2661 |
. . . . . . 7
       
      
            |
| 97 | 96 | 3expia 1267 |
. . . . . 6
                             |
| 98 | 62, 97 | jaodan 826 |
. . . . 5
    
                          |
| 99 | 39, 98 | jaod 395 |
. . . 4
    
      

      
             |
| 100 | 2, 99 | sylan2b 492 |
. . 3
      

      
             |
| 101 | 1, 100 | syl5bi 232 |
. 2
     
                 |
| 102 | 101 | impr 649 |
1
          
            |