Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lefldiveq Structured version   Visualization version   Unicode version

Theorem lefldiveq 39505
Description: A closed enough, smaller real  C has the same floor of  A when both are divided by  B. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lefldiveq.a  |-  ( ph  ->  A  e.  RR )
lefldiveq.b  |-  ( ph  ->  B  e.  RR+ )
lefldiveq.c  |-  ( ph  ->  C  e.  ( ( A  -  ( A  mod  B ) ) [,] A ) )
Assertion
Ref Expression
lefldiveq  |-  ( ph  ->  ( |_ `  ( A  /  B ) )  =  ( |_ `  ( C  /  B
) ) )

Proof of Theorem lefldiveq
StepHypRef Expression
1 lefldiveq.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
2 lefldiveq.b . . . . . . 7  |-  ( ph  ->  B  e.  RR+ )
3 moddiffl 12681 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( A  -  ( A  mod  B ) )  /  B )  =  ( |_ `  ( A  /  B
) ) )
41, 2, 3syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( A  -  ( A  mod  B ) )  /  B )  =  ( |_ `  ( A  /  B
) ) )
51, 2rerpdivcld 11903 . . . . . . 7  |-  ( ph  ->  ( A  /  B
)  e.  RR )
65flcld 12599 . . . . . 6  |-  ( ph  ->  ( |_ `  ( A  /  B ) )  e.  ZZ )
74, 6eqeltrd 2701 . . . . 5  |-  ( ph  ->  ( ( A  -  ( A  mod  B ) )  /  B )  e.  ZZ )
8 flid 12609 . . . . 5  |-  ( ( ( A  -  ( A  mod  B ) )  /  B )  e.  ZZ  ->  ( |_ `  ( ( A  -  ( A  mod  B ) )  /  B ) )  =  ( ( A  -  ( A  mod  B ) )  /  B ) )
97, 8syl 17 . . . 4  |-  ( ph  ->  ( |_ `  (
( A  -  ( A  mod  B ) )  /  B ) )  =  ( ( A  -  ( A  mod  B ) )  /  B
) )
109, 4eqtr2d 2657 . . 3  |-  ( ph  ->  ( |_ `  ( A  /  B ) )  =  ( |_ `  ( ( A  -  ( A  mod  B ) )  /  B ) ) )
111, 2modcld 12674 . . . . . 6  |-  ( ph  ->  ( A  mod  B
)  e.  RR )
121, 11resubcld 10458 . . . . 5  |-  ( ph  ->  ( A  -  ( A  mod  B ) )  e.  RR )
1312, 2rerpdivcld 11903 . . . 4  |-  ( ph  ->  ( ( A  -  ( A  mod  B ) )  /  B )  e.  RR )
14 iccssre 12255 . . . . . . 7  |-  ( ( ( A  -  ( A  mod  B ) )  e.  RR  /\  A  e.  RR )  ->  (
( A  -  ( A  mod  B ) ) [,] A )  C_  RR )
1512, 1, 14syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( A  -  ( A  mod  B ) ) [,] A ) 
C_  RR )
16 lefldiveq.c . . . . . 6  |-  ( ph  ->  C  e.  ( ( A  -  ( A  mod  B ) ) [,] A ) )
1715, 16sseldd 3604 . . . . 5  |-  ( ph  ->  C  e.  RR )
1817, 2rerpdivcld 11903 . . . 4  |-  ( ph  ->  ( C  /  B
)  e.  RR )
1912rexrd 10089 . . . . . 6  |-  ( ph  ->  ( A  -  ( A  mod  B ) )  e.  RR* )
201rexrd 10089 . . . . . 6  |-  ( ph  ->  A  e.  RR* )
21 iccgelb 12230 . . . . . 6  |-  ( ( ( A  -  ( A  mod  B ) )  e.  RR*  /\  A  e. 
RR*  /\  C  e.  ( ( A  -  ( A  mod  B ) ) [,] A ) )  ->  ( A  -  ( A  mod  B ) )  <_  C
)
2219, 20, 16, 21syl3anc 1326 . . . . 5  |-  ( ph  ->  ( A  -  ( A  mod  B ) )  <_  C )
2312, 17, 2, 22lediv1dd 11930 . . . 4  |-  ( ph  ->  ( ( A  -  ( A  mod  B ) )  /  B )  <_  ( C  /  B ) )
24 flwordi 12613 . . . 4  |-  ( ( ( ( A  -  ( A  mod  B ) )  /  B )  e.  RR  /\  ( C  /  B )  e.  RR  /\  ( ( A  -  ( A  mod  B ) )  /  B )  <_ 
( C  /  B
) )  ->  ( |_ `  ( ( A  -  ( A  mod  B ) )  /  B
) )  <_  ( |_ `  ( C  /  B ) ) )
2513, 18, 23, 24syl3anc 1326 . . 3  |-  ( ph  ->  ( |_ `  (
( A  -  ( A  mod  B ) )  /  B ) )  <_  ( |_ `  ( C  /  B
) ) )
2610, 25eqbrtrd 4675 . 2  |-  ( ph  ->  ( |_ `  ( A  /  B ) )  <_  ( |_ `  ( C  /  B
) ) )
27 iccleub 12229 . . . . 5  |-  ( ( ( A  -  ( A  mod  B ) )  e.  RR*  /\  A  e. 
RR*  /\  C  e.  ( ( A  -  ( A  mod  B ) ) [,] A ) )  ->  C  <_  A )
2819, 20, 16, 27syl3anc 1326 . . . 4  |-  ( ph  ->  C  <_  A )
2917, 1, 2, 28lediv1dd 11930 . . 3  |-  ( ph  ->  ( C  /  B
)  <_  ( A  /  B ) )
30 flwordi 12613 . . 3  |-  ( ( ( C  /  B
)  e.  RR  /\  ( A  /  B
)  e.  RR  /\  ( C  /  B
)  <_  ( A  /  B ) )  -> 
( |_ `  ( C  /  B ) )  <_  ( |_ `  ( A  /  B
) ) )
3118, 5, 29, 30syl3anc 1326 . 2  |-  ( ph  ->  ( |_ `  ( C  /  B ) )  <_  ( |_ `  ( A  /  B
) ) )
32 reflcl 12597 . . . 4  |-  ( ( A  /  B )  e.  RR  ->  ( |_ `  ( A  /  B ) )  e.  RR )
335, 32syl 17 . . 3  |-  ( ph  ->  ( |_ `  ( A  /  B ) )  e.  RR )
34 reflcl 12597 . . . 4  |-  ( ( C  /  B )  e.  RR  ->  ( |_ `  ( C  /  B ) )  e.  RR )
3518, 34syl 17 . . 3  |-  ( ph  ->  ( |_ `  ( C  /  B ) )  e.  RR )
3633, 35letri3d 10179 . 2  |-  ( ph  ->  ( ( |_ `  ( A  /  B
) )  =  ( |_ `  ( C  /  B ) )  <-> 
( ( |_ `  ( A  /  B
) )  <_  ( |_ `  ( C  /  B ) )  /\  ( |_ `  ( C  /  B ) )  <_  ( |_ `  ( A  /  B
) ) ) ) )
3726, 31, 36mpbir2and 957 1  |-  ( ph  ->  ( |_ `  ( A  /  B ) )  =  ( |_ `  ( C  /  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   RR*cxr 10073    <_ cle 10075    - cmin 10266    / cdiv 10684   ZZcz 11377   RR+crp 11832   [,]cicc 12178   |_cfl 12591    mod cmo 12668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-icc 12182  df-fl 12593  df-mod 12669
This theorem is referenced by:  ltmod  39870
  Copyright terms: Public domain W3C validator