Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrscss Structured version   Visualization version   Unicode version

Theorem lkrscss 34385
Description: The kernel of a scalar product of a functional includes the kernel of the functional. (The inclusion is proper for the zero product and equality otherwise.) (Contributed by NM, 9-Oct-2014.)
Hypotheses
Ref Expression
lkrsc.v  |-  V  =  ( Base `  W
)
lkrsc.d  |-  D  =  (Scalar `  W )
lkrsc.k  |-  K  =  ( Base `  D
)
lkrsc.t  |-  .x.  =  ( .r `  D )
lkrsc.f  |-  F  =  (LFnl `  W )
lkrsc.l  |-  L  =  (LKer `  W )
lkrsc.w  |-  ( ph  ->  W  e.  LVec )
lkrsc.g  |-  ( ph  ->  G  e.  F )
lkrsc.r  |-  ( ph  ->  R  e.  K )
Assertion
Ref Expression
lkrscss  |-  ( ph  ->  ( L `  G
)  C_  ( L `  ( G  oF  .x.  ( V  X.  { R } ) ) ) )

Proof of Theorem lkrscss
StepHypRef Expression
1 lkrsc.v . . . . . 6  |-  V  =  ( Base `  W
)
2 lkrsc.f . . . . . 6  |-  F  =  (LFnl `  W )
3 lkrsc.l . . . . . 6  |-  L  =  (LKer `  W )
4 lkrsc.w . . . . . . 7  |-  ( ph  ->  W  e.  LVec )
5 lveclmod 19106 . . . . . . 7  |-  ( W  e.  LVec  ->  W  e. 
LMod )
64, 5syl 17 . . . . . 6  |-  ( ph  ->  W  e.  LMod )
7 lkrsc.g . . . . . 6  |-  ( ph  ->  G  e.  F )
81, 2, 3, 6, 7lkrssv 34383 . . . . 5  |-  ( ph  ->  ( L `  G
)  C_  V )
9 lkrsc.d . . . . . . . 8  |-  D  =  (Scalar `  W )
10 lkrsc.k . . . . . . . 8  |-  K  =  ( Base `  D
)
11 lkrsc.t . . . . . . . 8  |-  .x.  =  ( .r `  D )
12 eqid 2622 . . . . . . . 8  |-  ( 0g
`  D )  =  ( 0g `  D
)
131, 9, 2, 10, 11, 12, 6, 7lfl0sc 34369 . . . . . . 7  |-  ( ph  ->  ( G  oF  .x.  ( V  X.  { ( 0g `  D ) } ) )  =  ( V  X.  { ( 0g
`  D ) } ) )
1413fveq2d 6195 . . . . . 6  |-  ( ph  ->  ( L `  ( G  oF  .x.  ( V  X.  { ( 0g
`  D ) } ) ) )  =  ( L `  ( V  X.  { ( 0g
`  D ) } ) ) )
15 eqid 2622 . . . . . . 7  |-  ( V  X.  { ( 0g
`  D ) } )  =  ( V  X.  { ( 0g
`  D ) } )
169, 12, 1, 2lfl0f 34356 . . . . . . . . 9  |-  ( W  e.  LMod  ->  ( V  X.  { ( 0g
`  D ) } )  e.  F )
176, 16syl 17 . . . . . . . 8  |-  ( ph  ->  ( V  X.  {
( 0g `  D
) } )  e.  F )
189, 12, 1, 2, 3lkr0f 34381 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( V  X.  { ( 0g
`  D ) } )  e.  F )  ->  ( ( L `
 ( V  X.  { ( 0g `  D ) } ) )  =  V  <->  ( V  X.  { ( 0g `  D ) } )  =  ( V  X.  { ( 0g `  D ) } ) ) )
196, 17, 18syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( L `  ( V  X.  { ( 0g `  D ) } ) )  =  V  <->  ( V  X.  { ( 0g `  D ) } )  =  ( V  X.  { ( 0g `  D ) } ) ) )
2015, 19mpbiri 248 . . . . . 6  |-  ( ph  ->  ( L `  ( V  X.  { ( 0g
`  D ) } ) )  =  V )
2114, 20eqtr2d 2657 . . . . 5  |-  ( ph  ->  V  =  ( L `
 ( G  oF  .x.  ( V  X.  { ( 0g `  D ) } ) ) ) )
228, 21sseqtrd 3641 . . . 4  |-  ( ph  ->  ( L `  G
)  C_  ( L `  ( G  oF  .x.  ( V  X.  { ( 0g `  D ) } ) ) ) )
2322adantr 481 . . 3  |-  ( (
ph  /\  R  =  ( 0g `  D ) )  ->  ( L `  G )  C_  ( L `  ( G  oF  .x.  ( V  X.  { ( 0g
`  D ) } ) ) ) )
24 sneq 4187 . . . . . . 7  |-  ( R  =  ( 0g `  D )  ->  { R }  =  { ( 0g `  D ) } )
2524xpeq2d 5139 . . . . . 6  |-  ( R  =  ( 0g `  D )  ->  ( V  X.  { R }
)  =  ( V  X.  { ( 0g
`  D ) } ) )
2625oveq2d 6666 . . . . 5  |-  ( R  =  ( 0g `  D )  ->  ( G  oF  .x.  ( V  X.  { R }
) )  =  ( G  oF  .x.  ( V  X.  { ( 0g `  D ) } ) ) )
2726fveq2d 6195 . . . 4  |-  ( R  =  ( 0g `  D )  ->  ( L `  ( G  oF  .x.  ( V  X.  { R }
) ) )  =  ( L `  ( G  oF  .x.  ( V  X.  { ( 0g
`  D ) } ) ) ) )
2827adantl 482 . . 3  |-  ( (
ph  /\  R  =  ( 0g `  D ) )  ->  ( L `  ( G  oF  .x.  ( V  X.  { R } ) ) )  =  ( L `
 ( G  oF  .x.  ( V  X.  { ( 0g `  D ) } ) ) ) )
2923, 28sseqtr4d 3642 . 2  |-  ( (
ph  /\  R  =  ( 0g `  D ) )  ->  ( L `  G )  C_  ( L `  ( G  oF  .x.  ( V  X.  { R }
) ) ) )
304adantr 481 . . . 4  |-  ( (
ph  /\  R  =/=  ( 0g `  D ) )  ->  W  e.  LVec )
317adantr 481 . . . 4  |-  ( (
ph  /\  R  =/=  ( 0g `  D ) )  ->  G  e.  F )
32 lkrsc.r . . . . 5  |-  ( ph  ->  R  e.  K )
3332adantr 481 . . . 4  |-  ( (
ph  /\  R  =/=  ( 0g `  D ) )  ->  R  e.  K )
34 simpr 477 . . . 4  |-  ( (
ph  /\  R  =/=  ( 0g `  D ) )  ->  R  =/=  ( 0g `  D ) )
351, 9, 10, 11, 2, 3, 30, 31, 33, 12, 34lkrsc 34384 . . 3  |-  ( (
ph  /\  R  =/=  ( 0g `  D ) )  ->  ( L `  ( G  oF  .x.  ( V  X.  { R } ) ) )  =  ( L `
 G ) )
36 eqimss2 3658 . . 3  |-  ( ( L `  ( G  oF  .x.  ( V  X.  { R }
) ) )  =  ( L `  G
)  ->  ( L `  G )  C_  ( L `  ( G  oF  .x.  ( V  X.  { R }
) ) ) )
3735, 36syl 17 . 2  |-  ( (
ph  /\  R  =/=  ( 0g `  D ) )  ->  ( L `  G )  C_  ( L `  ( G  oF  .x.  ( V  X.  { R }
) ) ) )
3829, 37pm2.61dane 2881 1  |-  ( ph  ->  ( L `  G
)  C_  ( L `  ( G  oF  .x.  ( V  X.  { R } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   {csn 4177    X. cxp 5112   ` cfv 5888  (class class class)co 6650    oFcof 6895   Basecbs 15857   .rcmulr 15942  Scalarcsca 15944   0gc0g 16100   LModclmod 18863   LVecclvec 19102  LFnlclfn 34344  LKerclk 34372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lvec 19103  df-lfl 34345  df-lkr 34373
This theorem is referenced by:  lfl1dim  34408  lfl1dim2N  34409  lkrss  34455
  Copyright terms: Public domain W3C validator