Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linethru Structured version   Visualization version   Unicode version

Theorem linethru 32260
Description: If  A is a line containing two distinct points  P and  Q, then  A is the line through  P and  Q. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
linethru  |-  ( ( A  e. LinesEE  /\  ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) )

Proof of Theorem linethru
Dummy variables  a 
b  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellines 32259 . . 3  |-  ( A  e. LinesEE 
<->  E. n  e.  NN  E. a  e.  ( EE
`  n ) E. b  e.  ( EE
`  n ) ( a  =/=  b  /\  A  =  ( aLine b ) ) )
2 simpll1 1100 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  n  e.  NN )
3 simpll2 1101 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  a  e.  ( EE `  n ) )
4 simpll3 1102 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  b  e.  ( EE `  n ) )
5 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  a  =/=  b
)
6 liness 32252 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
) )  ->  (
aLine b )  C_  ( EE `  n ) )
72, 3, 4, 5, 6syl13anc 1328 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  ( aLine b )  C_  ( EE `  n ) )
8 simprll 802 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  P  e.  ( aLine b ) )
97, 8sseldd 3604 . . . . . . . . . 10  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  P  e.  ( EE `  n ) )
10 simprlr 803 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  Q  e.  ( aLine b ) )
117, 10sseldd 3604 . . . . . . . . . 10  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  Q  e.  ( EE `  n ) )
12 simplll 798 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  ->  P  e.  ( aLine b ) )
1312adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  P  e.  ( aLine b ) )
14 simpll1 1100 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  n  e.  NN )
15 simpll2 1101 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
a  e.  ( EE
`  n ) )
16 simpll3 1102 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
b  e.  ( EE
`  n ) )
17 simplr 792 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
a  =/=  b )
18 simprrl 804 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  P  e.  ( EE `  n ) )
19 simprlr 803 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  ->  P  =/=  a )
2019necomd 2849 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
a  =/=  P )
21 lineelsb2 32255 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  ( P  e.  ( EE `  n
)  /\  a  =/=  P ) )  ->  ( P  e.  ( aLine b )  ->  (
aLine b )  =  ( aLine P ) ) )
2214, 15, 16, 17, 18, 20, 21syl132anc 1344 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( P  e.  ( aLine b )  -> 
( aLine b )  =  ( aLine P
) ) )
2313, 22mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( aLine P
) )
24 linecom 32257 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  P  e.  ( EE `  n )  /\  a  =/=  P
) )  ->  (
aLine P )  =  ( PLine a ) )
2514, 15, 18, 20, 24syl13anc 1328 . . . . . . . . . . . . . 14  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine P )  =  ( PLine a
) )
2623, 25eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine a
) )
27 neeq2 2857 . . . . . . . . . . . . . . . . 17  |-  ( Q  =  a  ->  ( P  =/=  Q  <->  P  =/=  a ) )
2827anbi2d 740 . . . . . . . . . . . . . . . 16  |-  ( Q  =  a  ->  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  <->  ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a ) ) )
2928anbi1d 741 . . . . . . . . . . . . . . 15  |-  ( Q  =  a  ->  (
( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/= 
Q )  /\  ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
) ) )  <->  ( (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a )  /\  ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n ) ) ) ) )
3029anbi2d 740 . . . . . . . . . . . . . 14  |-  ( Q  =  a  ->  (
( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  <->  ( (
( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  ( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a )  /\  ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
) ) ) ) ) )
31 oveq2 6658 . . . . . . . . . . . . . . 15  |-  ( Q  =  a  ->  ( PLine Q )  =  ( PLine a ) )
3231eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( Q  =  a  ->  (
( aLine b )  =  ( PLine Q
)  <->  ( aLine b )  =  ( PLine a ) ) )
3330, 32imbi12d 334 . . . . . . . . . . . . 13  |-  ( Q  =  a  ->  (
( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) )  <->  ( (
( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  a
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine a
) ) ) )
3426, 33mpbiri 248 . . . . . . . . . . . 12  |-  ( Q  =  a  ->  (
( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) ) )
35 simp1 1061 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b ) )
36 simp2l 1087 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )
3735, 36, 10syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  e.  ( aLine b ) )
38 simp1l1 1154 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  n  e.  NN )
39 simp1l2 1155 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  a  e.  ( EE `  n
) )
40 simp1l3 1156 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  b  e.  ( EE `  n
) )
41 simp1r 1086 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  a  =/=  b )
42 simp2rr 1131 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  e.  ( EE `  n
) )
43 simp3 1063 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  =/=  a )
4443necomd 2849 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  a  =/=  Q )
45 lineelsb2 32255 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  a  =/=  b
)  /\  ( Q  e.  ( EE `  n
)  /\  a  =/=  Q ) )  ->  ( Q  e.  ( aLine b )  ->  (
aLine b )  =  ( aLine Q ) ) )
4638, 39, 40, 41, 42, 44, 45syl132anc 1344 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( Q  e.  ( aLine b )  ->  (
aLine b )  =  ( aLine Q ) ) )
4737, 46mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine b )  =  ( aLine Q ) )
48 linecom 32257 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  ( a  e.  ( EE `  n )  /\  Q  e.  ( EE `  n )  /\  a  =/=  Q
) )  ->  (
aLine Q )  =  ( QLine a ) )
4938, 39, 42, 44, 48syl13anc 1328 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine Q )  =  ( QLine a ) )
5047, 49eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine b )  =  ( QLine a ) )
5136simplld 791 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  e.  ( aLine b ) )
5251, 50eleqtrd 2703 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  e.  ( QLine a ) )
53 simp2rl 1130 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  e.  ( EE `  n
) )
54 simp2lr 1129 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  P  =/=  Q )
5554necomd 2849 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  Q  =/=  P )
56 lineelsb2 32255 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  ( Q  e.  ( EE `  n )  /\  a  e.  ( EE `  n )  /\  Q  =/=  a )  /\  ( P  e.  ( EE `  n )  /\  Q  =/=  P ) )  -> 
( P  e.  ( QLine a )  -> 
( QLine a )  =  ( QLine P
) ) )
5738, 42, 39, 43, 53, 55, 56syl132anc 1344 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( P  e.  ( QLine a )  ->  ( QLine a )  =  ( QLine P ) ) )
5852, 57mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( QLine a )  =  ( QLine P ) )
59 linecom 32257 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  ( Q  e.  ( EE `  n )  /\  P  e.  ( EE `  n )  /\  Q  =/=  P ) )  -> 
( QLine P )  =  ( PLine Q
) )
6038, 42, 53, 55, 59syl13anc 1328 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  ( QLine P )  =  ( PLine Q ) )
6150, 58, 603eqtrd 2660 . . . . . . . . . . . . . 14  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) )  /\  Q  =/=  a )  ->  (
aLine b )  =  ( PLine Q ) )
62613expa 1265 . . . . . . . . . . . . 13  |-  ( ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  /\  Q  =/=  a )  -> 
( aLine b )  =  ( PLine Q
) )
6362expcom 451 . . . . . . . . . . . 12  |-  ( Q  =/=  a  ->  (
( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) ) )
6434, 63pm2.61ine 2877 . . . . . . . . . . 11  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q
)  /\  ( P  e.  ( EE `  n
)  /\  Q  e.  ( EE `  n ) ) ) )  -> 
( aLine b )  =  ( PLine Q
) )
6564expr 643 . . . . . . . . . 10  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  ( ( P  e.  ( EE `  n )  /\  Q  e.  ( EE `  n
) )  ->  (
aLine b )  =  ( PLine Q ) ) )
669, 11, 65mp2and 715 . . . . . . . . 9  |-  ( ( ( ( n  e.  NN  /\  a  e.  ( EE `  n
)  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  /\  (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q ) )  ->  ( aLine b )  =  ( PLine Q ) )
6766ex 450 . . . . . . . 8  |-  ( ( ( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  -> 
( ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/= 
Q )  ->  (
aLine b )  =  ( PLine Q ) ) )
68 eleq2 2690 . . . . . . . . . . 11  |-  ( A  =  ( aLine b )  ->  ( P  e.  A  <->  P  e.  (
aLine b ) ) )
69 eleq2 2690 . . . . . . . . . . 11  |-  ( A  =  ( aLine b )  ->  ( Q  e.  A  <->  Q  e.  (
aLine b ) ) )
7068, 69anbi12d 747 . . . . . . . . . 10  |-  ( A  =  ( aLine b )  ->  ( ( P  e.  A  /\  Q  e.  A )  <->  ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) ) ) )
7170anbi1d 741 . . . . . . . . 9  |-  ( A  =  ( aLine b )  ->  ( (
( P  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  <->  ( ( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/= 
Q ) ) )
72 eqeq1 2626 . . . . . . . . 9  |-  ( A  =  ( aLine b )  ->  ( A  =  ( PLine Q
)  <->  ( aLine b )  =  ( PLine Q ) ) )
7371, 72imbi12d 334 . . . . . . . 8  |-  ( A  =  ( aLine b )  ->  ( (
( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q )  ->  A  =  ( PLine Q
) )  <->  ( (
( P  e.  ( aLine b )  /\  Q  e.  ( aLine b ) )  /\  P  =/=  Q )  -> 
( aLine b )  =  ( PLine Q
) ) ) )
7467, 73syl5ibrcom 237 . . . . . . 7  |-  ( ( ( n  e.  NN  /\  a  e.  ( EE
`  n )  /\  b  e.  ( EE `  n ) )  /\  a  =/=  b )  -> 
( A  =  ( aLine b )  -> 
( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q )  ->  A  =  ( PLine Q
) ) ) )
7574expimpd 629 . . . . . 6  |-  ( ( n  e.  NN  /\  a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
) )  ->  (
( a  =/=  b  /\  A  =  (
aLine b ) )  ->  ( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) ) ) )
76753expa 1265 . . . . 5  |-  ( ( ( n  e.  NN  /\  a  e.  ( EE
`  n ) )  /\  b  e.  ( EE `  n ) )  ->  ( (
a  =/=  b  /\  A  =  ( aLine b ) )  -> 
( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q )  ->  A  =  ( PLine Q
) ) ) )
7776rexlimdva 3031 . . . 4  |-  ( ( n  e.  NN  /\  a  e.  ( EE `  n ) )  -> 
( E. b  e.  ( EE `  n
) ( a  =/=  b  /\  A  =  ( aLine b ) )  ->  ( (
( P  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  ->  A  =  ( PLine Q ) ) ) )
7877rexlimivv 3036 . . 3  |-  ( E. n  e.  NN  E. a  e.  ( EE `  n ) E. b  e.  ( EE `  n
) ( a  =/=  b  /\  A  =  ( aLine b ) )  ->  ( (
( P  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  ->  A  =  ( PLine Q ) ) )
791, 78sylbi 207 . 2  |-  ( A  e. LinesEE  ->  ( ( ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) ) )
80793impib 1262 1  |-  ( ( A  e. LinesEE  /\  ( P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  A  =  ( PLine Q ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    C_ wss 3574   ` cfv 5888  (class class class)co 6650   NNcn 11020   EEcee 25768  Linecline2 32241  LinesEEclines2 32243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ee 25771  df-btwn 25772  df-cgr 25773  df-ofs 32090  df-colinear 32146  df-ifs 32147  df-cgr3 32148  df-fs 32149  df-line2 32244  df-lines2 32246
This theorem is referenced by:  hilbert1.2  32262  lineintmo  32264
  Copyright terms: Public domain W3C validator