Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineelsb2 Structured version   Visualization version   Unicode version

Theorem lineelsb2 32255
Description: If  S lies on  P Q, then  P Q  =  P S. Theorem 6.16 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 27-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
lineelsb2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  -> 
( S  e.  ( PLine Q )  -> 
( PLine Q )  =  ( PLine S
) ) )

Proof of Theorem lineelsb2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl1 1064 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  N  e.  NN )
2 simpl3l 1116 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  S  e.  ( EE `  N
) )
3 simpl21 1139 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  P  e.  ( EE `  N
) )
4 simpl22 1140 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  Q  e.  ( EE `  N
) )
5 brcolinear 32166 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( S  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  -> 
( S  Colinear  <. P ,  Q >. 
<->  ( S  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  S >.  \/  Q  Btwn  <. S ,  P >. ) ) )
61, 2, 3, 4, 5syl13anc 1328 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  ( S  Colinear  <. P ,  Q >.  <-> 
( S  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  S >.  \/  Q  Btwn  <. S ,  P >. ) ) )
76biimpa 501 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  S  Colinear  <. P ,  Q >. )  ->  ( S  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  S >.  \/  Q  Btwn  <. S ,  P >. ) )
8 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  x  e.  ( EE `  N
) )
9 brcolinear 32166 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( x  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  -> 
( x  Colinear  <. P ,  Q >. 
<->  ( x  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  x >.  \/  Q  Btwn  <. x ,  P >. ) ) )
101, 8, 3, 4, 9syl13anc 1328 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  (
x  Colinear  <. P ,  Q >.  <-> 
( x  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  x >.  \/  Q  Btwn  <. x ,  P >. ) ) )
1110adantr 481 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  S  Btwn  <. P ,  Q >. )  ->  ( x  Colinear  <. P ,  Q >.  <->  (
x  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  x >.  \/  Q  Btwn  <. x ,  P >. ) ) )
12 btwnconn3 32210 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  S  e.  ( EE `  N ) )  /\  ( x  e.  ( EE `  N )  /\  Q  e.  ( EE `  N ) ) )  ->  ( ( S 
Btwn  <. P ,  Q >.  /\  x  Btwn  <. P ,  Q >. )  ->  ( S  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  S >. ) ) )
131, 3, 2, 8, 4, 12syl122anc 1335 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  (
( S  Btwn  <. P ,  Q >.  /\  x  Btwn  <. P ,  Q >. )  ->  ( S  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  S >. ) ) )
1413imp 445 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  x  Btwn  <. P ,  Q >. ) )  ->  ( S  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  S >. ) )
15 btwncolinear3 32178 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  x  e.  ( EE `  N )  /\  S  e.  ( EE `  N
) ) )  -> 
( S  Btwn  <. P ,  x >.  ->  x  Colinear  <. P ,  S >. ) )
161, 3, 8, 2, 15syl13anc 1328 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  ( S  Btwn  <. P ,  x >.  ->  x  Colinear  <. P ,  S >. ) )
17 btwncolinear5 32180 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  S  e.  ( EE `  N )  /\  x  e.  ( EE `  N
) ) )  -> 
( x  Btwn  <. P ,  S >.  ->  x  Colinear  <. P ,  S >. ) )
181, 3, 2, 8, 17syl13anc 1328 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  (
x  Btwn  <. P ,  S >.  ->  x  Colinear  <. P ,  S >. ) )
1916, 18jaod 395 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  (
( S  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  S >. )  ->  x  Colinear  <. P ,  S >. ) )
2019adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  x  Btwn  <. P ,  Q >. ) )  ->  ( ( S  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  S >. )  ->  x  Colinear  <. P ,  S >. ) )
2114, 20mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  x  Btwn  <. P ,  Q >. ) )  ->  x  Colinear  <. P ,  S >. )
2221expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  S  Btwn  <. P ,  Q >. )  ->  ( x  Btwn  <. P ,  Q >.  ->  x  Colinear  <. P ,  S >. ) )
23 simprl 794 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  S  Btwn  <. P ,  Q >. )
241, 2, 3, 4, 23btwncomand 32122 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  S  Btwn  <. Q ,  P >. )
25 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  P  Btwn  <. Q ,  x >. )
261, 4, 2, 3, 8, 24, 25btwnexch3and 32128 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  P  Btwn  <. S ,  x >. )
27 btwncolinear4 32179 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( S  e.  ( EE `  N )  /\  x  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( P  Btwn  <. S ,  x >.  ->  x  Colinear  <. P ,  S >. ) )
281, 2, 8, 3, 27syl13anc 1328 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  ( P  Btwn  <. S ,  x >.  ->  x  Colinear  <. P ,  S >. ) )
2928adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  ( P  Btwn  <. S ,  x >.  ->  x  Colinear  <. P ,  S >. ) )
3026, 29mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  x  Colinear  <. P ,  S >. )
3130expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  S  Btwn  <. P ,  Q >. )  ->  ( P  Btwn  <. Q ,  x >.  ->  x  Colinear  <. P ,  S >. ) )
32 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  S  Btwn  <. P ,  Q >. )
33 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  Q  Btwn  <.
x ,  P >. )
341, 4, 8, 3, 33btwncomand 32122 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  Q  Btwn  <. P ,  x >. )
351, 3, 2, 4, 8, 32, 34btwnexchand 32133 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  S  Btwn  <. P ,  x >. )
3616adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  ( S  Btwn  <. P ,  x >.  ->  x  Colinear  <. P ,  S >. ) )
3735, 36mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  x  Colinear  <. P ,  S >. )
3837expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  S  Btwn  <. P ,  Q >. )  ->  ( Q  Btwn  <. x ,  P >.  ->  x  Colinear  <. P ,  S >. ) )
3922, 31, 383jaod 1392 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  S  Btwn  <. P ,  Q >. )  ->  ( (
x  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  x >.  \/  Q  Btwn  <. x ,  P >. )  ->  x  Colinear  <. P ,  S >. ) )
4011, 39sylbid 230 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  S  Btwn  <. P ,  Q >. )  ->  ( x  Colinear  <. P ,  Q >.  ->  x  Colinear  <. P ,  S >. ) )
41 brcolinear 32166 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( x  e.  ( EE `  N )  /\  P  e.  ( EE `  N )  /\  S  e.  ( EE `  N
) ) )  -> 
( x  Colinear  <. P ,  S >. 
<->  ( x  Btwn  <. P ,  S >.  \/  P  Btwn  <. S ,  x >.  \/  S  Btwn  <. x ,  P >. ) ) )
421, 8, 3, 2, 41syl13anc 1328 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  (
x  Colinear  <. P ,  S >.  <-> 
( x  Btwn  <. P ,  S >.  \/  P  Btwn  <. S ,  x >.  \/  S  Btwn  <. x ,  P >. ) ) )
4342adantr 481 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  S  Btwn  <. P ,  Q >. )  ->  ( x  Colinear  <. P ,  S >.  <->  (
x  Btwn  <. P ,  S >.  \/  P  Btwn  <. S ,  x >.  \/  S  Btwn  <. x ,  P >. ) ) )
44 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  x  Btwn  <. P ,  S >. ) )  ->  x  Btwn  <. P ,  S >. )
45 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  x  Btwn  <. P ,  S >. ) )  ->  S  Btwn  <. P ,  Q >. )
461, 3, 8, 2, 4, 44, 45btwnexchand 32133 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  x  Btwn  <. P ,  S >. ) )  ->  x  Btwn  <. P ,  Q >. )
47 btwncolinear5 32180 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  x  e.  ( EE `  N
) ) )  -> 
( x  Btwn  <. P ,  Q >.  ->  x  Colinear  <. P ,  Q >. ) )
481, 3, 4, 8, 47syl13anc 1328 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  (
x  Btwn  <. P ,  Q >.  ->  x  Colinear  <. P ,  Q >. ) )
4948adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  x  Btwn  <. P ,  S >. ) )  ->  ( x  Btwn  <. P ,  Q >.  ->  x  Colinear  <. P ,  Q >. ) )
5046, 49mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  x  Btwn  <. P ,  S >. ) )  ->  x  Colinear  <. P ,  Q >. )
5150expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  S  Btwn  <. P ,  Q >. )  ->  ( x  Btwn  <. P ,  S >.  ->  x  Colinear  <. P ,  Q >. ) )
52 simpl3r 1117 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  P  =/=  S )
5352necomd 2849 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  S  =/=  P )
5453adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  P  Btwn  <. S ,  x >. ) )  ->  S  =/=  P )
55 simprl 794 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  P  Btwn  <. S ,  x >. ) )  ->  S  Btwn  <. P ,  Q >. )
561, 2, 3, 4, 55btwncomand 32122 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  P  Btwn  <. S ,  x >. ) )  ->  S  Btwn  <. Q ,  P >. )
57 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  P  Btwn  <. S ,  x >. ) )  ->  P  Btwn  <. S ,  x >. )
58 btwnouttr2 32129 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  S  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( ( S  =/=  P  /\  S  Btwn  <. Q ,  P >.  /\  P  Btwn  <. S ,  x >. )  ->  P  Btwn  <. Q ,  x >. ) )
591, 4, 2, 3, 8, 58syl122anc 1335 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  (
( S  =/=  P  /\  S  Btwn  <. Q ,  P >.  /\  P  Btwn  <. S ,  x >. )  ->  P  Btwn  <. Q ,  x >. ) )
6059adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  P  Btwn  <. S ,  x >. ) )  ->  ( ( S  =/=  P  /\  S  Btwn  <. Q ,  P >.  /\  P  Btwn  <. S ,  x >. )  ->  P  Btwn  <. Q ,  x >. ) )
6154, 56, 57, 60mp3and 1427 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  P  Btwn  <. S ,  x >. ) )  ->  P  Btwn  <. Q ,  x >. )
62 btwncolinear4 32179 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  x  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( P  Btwn  <. Q ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
631, 4, 8, 3, 62syl13anc 1328 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  ( P  Btwn  <. Q ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
6463adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  P  Btwn  <. S ,  x >. ) )  ->  ( P  Btwn  <. Q ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
6561, 64mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  P  Btwn  <. S ,  x >. ) )  ->  x  Colinear  <. P ,  Q >. )
6665expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  S  Btwn  <. P ,  Q >. )  ->  ( P  Btwn  <. S ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
6752adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  P  =/=  S )
68 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  S  Btwn  <. P ,  Q >. )
69 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  S  Btwn  <.
x ,  P >. )
701, 2, 8, 3, 69btwncomand 32122 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  S  Btwn  <. P ,  x >. )
71 btwnconn1 32208 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  S  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( ( P  =/=  S  /\  S  Btwn  <. P ,  Q >.  /\  S  Btwn  <. P ,  x >. )  ->  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) )
721, 3, 2, 4, 8, 71syl122anc 1335 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  (
( P  =/=  S  /\  S  Btwn  <. P ,  Q >.  /\  S  Btwn  <. P ,  x >. )  ->  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) )
7372adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  ( ( P  =/=  S  /\  S  Btwn  <. P ,  Q >.  /\  S  Btwn  <. P ,  x >. )  ->  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) )
7467, 68, 70, 73mp3and 1427 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )
75 btwncolinear3 32178 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  x  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
) ) )  -> 
( Q  Btwn  <. P ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
761, 3, 8, 4, 75syl13anc 1328 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  ( Q  Btwn  <. P ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
7776, 48jaod 395 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  (
( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  ->  x  Colinear  <. P ,  Q >. ) )
7877adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  ->  x  Colinear  <. P ,  Q >. ) )
7974, 78mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  x  Colinear  <. P ,  Q >. )
8079expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  S  Btwn  <. P ,  Q >. )  ->  ( S  Btwn  <. x ,  P >.  ->  x  Colinear  <. P ,  Q >. ) )
8151, 66, 803jaod 1392 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  S  Btwn  <. P ,  Q >. )  ->  ( (
x  Btwn  <. P ,  S >.  \/  P  Btwn  <. S ,  x >.  \/  S  Btwn  <. x ,  P >. )  ->  x  Colinear  <. P ,  Q >. ) )
8243, 81sylbid 230 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  S  Btwn  <. P ,  Q >. )  ->  ( x  Colinear  <. P ,  S >.  ->  x  Colinear  <. P ,  Q >. ) )
8340, 82impbid 202 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  S  Btwn  <. P ,  Q >. )  ->  ( x  Colinear  <. P ,  Q >.  <->  x  Colinear  <. P ,  S >. ) )
8410adantr 481 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  S >. )  ->  ( x  Colinear  <. P ,  Q >.  <->  (
x  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  x >.  \/  Q  Btwn  <. x ,  P >. ) ) )
85 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  x  Btwn  <. P ,  Q >. ) )  ->  x  Btwn  <. P ,  Q >. )
861, 8, 3, 4, 85btwncomand 32122 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  x  Btwn  <. P ,  Q >. ) )  ->  x  Btwn  <. Q ,  P >. )
87 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  x  Btwn  <. P ,  Q >. ) )  ->  P  Btwn  <. Q ,  S >. )
881, 4, 8, 3, 2, 86, 87btwnexch3and 32128 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  x  Btwn  <. P ,  Q >. ) )  ->  P  Btwn  <.
x ,  S >. )
89 btwncolinear2 32177 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( x  e.  ( EE `  N )  /\  S  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( P  Btwn  <. x ,  S >.  ->  x  Colinear  <. P ,  S >. )
)
901, 8, 2, 3, 89syl13anc 1328 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  ( P  Btwn  <. x ,  S >.  ->  x  Colinear  <. P ,  S >. ) )
9190adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  x  Btwn  <. P ,  Q >. ) )  ->  ( P  Btwn  <. x ,  S >.  ->  x  Colinear  <. P ,  S >. ) )
9288, 91mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  x  Btwn  <. P ,  Q >. ) )  ->  x  Colinear  <. P ,  S >. )
9392expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  S >. )  ->  ( x  Btwn  <. P ,  Q >.  ->  x  Colinear  <. P ,  S >. ) )
94 simpl23 1141 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  P  =/=  Q )
9594necomd 2849 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  Q  =/=  P )
9695adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  Q  =/=  P )
97 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  P  Btwn  <. Q ,  S >. )
98 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  P  Btwn  <. Q ,  x >. )
99 btwnconn2 32209 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) )  /\  ( S  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( ( Q  =/=  P  /\  P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. Q ,  x >. )  ->  ( S  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  S >. ) ) )
1001, 4, 3, 2, 8, 99syl122anc 1335 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  (
( Q  =/=  P  /\  P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. Q ,  x >. )  ->  ( S  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  S >. ) ) )
101100adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  ( ( Q  =/=  P  /\  P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. Q ,  x >. )  ->  ( S  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  S >. ) ) )
10296, 97, 98, 101mp3and 1427 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  ( S  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  S >. ) )
10319adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  ( ( S  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  S >. )  ->  x  Colinear  <. P ,  S >. ) )
104102, 103mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  x  Colinear  <. P ,  S >. )
105104expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  S >. )  ->  ( P  Btwn  <. Q ,  x >.  ->  x  Colinear  <. P ,  S >. ) )
10694adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  P  =/=  Q )
107 simprl 794 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  P  Btwn  <. Q ,  S >. )
1081, 3, 4, 2, 107btwncomand 32122 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  P  Btwn  <. S ,  Q >. )
109 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  Q  Btwn  <.
x ,  P >. )
1101, 4, 8, 3, 109btwncomand 32122 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  Q  Btwn  <. P ,  x >. )
111 btwnouttr 32131 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( S  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( ( P  =/=  Q  /\  P  Btwn  <. S ,  Q >.  /\  Q  Btwn  <. P ,  x >. )  ->  P  Btwn  <. S ,  x >. ) )
1121, 2, 3, 4, 8, 111syl122anc 1335 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  (
( P  =/=  Q  /\  P  Btwn  <. S ,  Q >.  /\  Q  Btwn  <. P ,  x >. )  ->  P  Btwn  <. S ,  x >. ) )
113112adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  ( ( P  =/=  Q  /\  P  Btwn  <. S ,  Q >.  /\  Q  Btwn  <. P ,  x >. )  ->  P  Btwn  <. S ,  x >. ) )
114106, 108, 110, 113mp3and 1427 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  P  Btwn  <. S ,  x >. )
11528adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  ( P  Btwn  <. S ,  x >.  ->  x  Colinear  <. P ,  S >. ) )
116114, 115mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  x  Colinear  <. P ,  S >. )
117116expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  S >. )  ->  ( Q  Btwn  <. x ,  P >.  ->  x  Colinear  <. P ,  S >. ) )
11893, 105, 1173jaod 1392 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  S >. )  ->  ( (
x  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  x >.  \/  Q  Btwn  <. x ,  P >. )  ->  x  Colinear  <. P ,  S >. ) )
11984, 118sylbid 230 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  S >. )  ->  ( x  Colinear  <. P ,  Q >.  ->  x  Colinear  <. P ,  S >. ) )
12042adantr 481 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  S >. )  ->  ( x  Colinear  <. P ,  S >.  <->  (
x  Btwn  <. P ,  S >.  \/  P  Btwn  <. S ,  x >.  \/  S  Btwn  <. x ,  P >. ) ) )
121 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  x  Btwn  <. P ,  S >. ) )  ->  x  Btwn  <. P ,  S >. )
1221, 8, 3, 2, 121btwncomand 32122 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  x  Btwn  <. P ,  S >. ) )  ->  x  Btwn  <. S ,  P >. )
123 simprl 794 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  x  Btwn  <. P ,  S >. ) )  ->  P  Btwn  <. Q ,  S >. )
1241, 3, 4, 2, 123btwncomand 32122 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  x  Btwn  <. P ,  S >. ) )  ->  P  Btwn  <. S ,  Q >. )
1251, 2, 8, 3, 4, 122, 124btwnexch3and 32128 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  x  Btwn  <. P ,  S >. ) )  ->  P  Btwn  <.
x ,  Q >. )
126 btwncolinear2 32177 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( x  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  -> 
( P  Btwn  <. x ,  Q >.  ->  x  Colinear  <. P ,  Q >. )
)
1271, 8, 4, 3, 126syl13anc 1328 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  ( P  Btwn  <. x ,  Q >.  ->  x  Colinear  <. P ,  Q >. ) )
128127adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  x  Btwn  <. P ,  S >. ) )  ->  ( P  Btwn  <. x ,  Q >.  ->  x  Colinear  <. P ,  Q >. ) )
129125, 128mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  x  Btwn  <. P ,  S >. ) )  ->  x  Colinear  <. P ,  Q >. )
130129expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  S >. )  ->  ( x  Btwn  <. P ,  S >.  ->  x  Colinear  <. P ,  Q >. ) )
13153adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. S ,  x >. ) )  ->  S  =/=  P )
132 simprl 794 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. S ,  x >. ) )  ->  P  Btwn  <. Q ,  S >. )
1331, 3, 4, 2, 132btwncomand 32122 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. S ,  x >. ) )  ->  P  Btwn  <. S ,  Q >. )
134 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. S ,  x >. ) )  ->  P  Btwn  <. S ,  x >. )
135 btwnconn2 32209 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( S  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) )  /\  ( Q  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( ( S  =/=  P  /\  P  Btwn  <. S ,  Q >.  /\  P  Btwn  <. S ,  x >. )  ->  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) )
1361, 2, 3, 4, 8, 135syl122anc 1335 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  (
( S  =/=  P  /\  P  Btwn  <. S ,  Q >.  /\  P  Btwn  <. S ,  x >. )  ->  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) )
137136adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. S ,  x >. ) )  ->  ( ( S  =/=  P  /\  P  Btwn  <. S ,  Q >.  /\  P  Btwn  <. S ,  x >. )  ->  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) )
138131, 133, 134, 137mp3and 1427 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. S ,  x >. ) )  ->  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )
13977adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. S ,  x >. ) )  ->  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  ->  x  Colinear  <. P ,  Q >. ) )
140138, 139mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  P  Btwn  <. S ,  x >. ) )  ->  x  Colinear  <. P ,  Q >. )
141140expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  S >. )  ->  ( P  Btwn  <. S ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
14252adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  P  =/=  S )
143 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  P  Btwn  <. Q ,  S >. )
144 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  S  Btwn  <.
x ,  P >. )
1451, 2, 8, 3, 144btwncomand 32122 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  S  Btwn  <. P ,  x >. )
146 btwnouttr 32131 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( Q  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) )  /\  ( S  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( ( P  =/=  S  /\  P  Btwn  <. Q ,  S >.  /\  S  Btwn  <. P ,  x >. )  ->  P  Btwn  <. Q ,  x >. ) )
1471, 4, 3, 2, 8, 146syl122anc 1335 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  (
( P  =/=  S  /\  P  Btwn  <. Q ,  S >.  /\  S  Btwn  <. P ,  x >. )  ->  P  Btwn  <. Q ,  x >. ) )
148147adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  ( ( P  =/=  S  /\  P  Btwn  <. Q ,  S >.  /\  S  Btwn  <. P ,  x >. )  ->  P  Btwn  <. Q ,  x >. ) )
149142, 143, 145, 148mp3and 1427 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  P  Btwn  <. Q ,  x >. )
15063adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  ( P  Btwn  <. Q ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
151149, 150mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( P  Btwn  <. Q ,  S >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  x  Colinear  <. P ,  Q >. )
152151expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  S >. )  ->  ( S  Btwn  <. x ,  P >.  ->  x  Colinear  <. P ,  Q >. ) )
153130, 141, 1523jaod 1392 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  S >. )  ->  ( (
x  Btwn  <. P ,  S >.  \/  P  Btwn  <. S ,  x >.  \/  S  Btwn  <. x ,  P >. )  ->  x  Colinear  <. P ,  Q >. ) )
154120, 153sylbid 230 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  S >. )  ->  ( x  Colinear  <. P ,  S >.  ->  x  Colinear  <. P ,  Q >. ) )
155119, 154impbid 202 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  P  Btwn  <. Q ,  S >. )  ->  ( x  Colinear  <. P ,  Q >.  <->  x  Colinear  <. P ,  S >. ) )
15610adantr 481 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  Q  Btwn  <. S ,  P >. )  ->  ( x  Colinear  <. P ,  Q >.  <->  (
x  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  x >.  \/  Q  Btwn  <. x ,  P >. ) ) )
157 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  x  Btwn  <. P ,  Q >. ) )  ->  x  Btwn  <. P ,  Q >. )
158 simprl 794 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  x  Btwn  <. P ,  Q >. ) )  ->  Q  Btwn  <. S ,  P >. )
1591, 4, 2, 3, 158btwncomand 32122 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  x  Btwn  <. P ,  Q >. ) )  ->  Q  Btwn  <. P ,  S >. )
1601, 3, 8, 4, 2, 157, 159btwnexchand 32133 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  x  Btwn  <. P ,  Q >. ) )  ->  x  Btwn  <. P ,  S >. )
16118adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  x  Btwn  <. P ,  Q >. ) )  ->  ( x  Btwn  <. P ,  S >.  ->  x  Colinear  <. P ,  S >. ) )
162160, 161mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  x  Btwn  <. P ,  Q >. ) )  ->  x  Colinear  <. P ,  S >. )
163162expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  Q  Btwn  <. S ,  P >. )  ->  ( x  Btwn  <. P ,  Q >.  ->  x  Colinear  <. P ,  S >. ) )
16495adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  Q  =/=  P )
165 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  Q  Btwn  <. S ,  P >. )
166 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  P  Btwn  <. Q ,  x >. )
167 btwnouttr2 32129 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( S  e.  ( EE `  N )  /\  Q  e.  ( EE `  N ) )  /\  ( P  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( ( Q  =/=  P  /\  Q  Btwn  <. S ,  P >.  /\  P  Btwn  <. Q ,  x >. )  ->  P  Btwn  <. S ,  x >. ) )
1681, 2, 4, 3, 8, 167syl122anc 1335 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  (
( Q  =/=  P  /\  Q  Btwn  <. S ,  P >.  /\  P  Btwn  <. Q ,  x >. )  ->  P  Btwn  <. S ,  x >. ) )
169168adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  ( ( Q  =/=  P  /\  Q  Btwn  <. S ,  P >.  /\  P  Btwn  <. Q ,  x >. )  ->  P  Btwn  <. S ,  x >. ) )
170164, 165, 166, 169mp3and 1427 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  P  Btwn  <. S ,  x >. )
17128adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  ( P  Btwn  <. S ,  x >.  ->  x  Colinear  <. P ,  S >. ) )
172170, 171mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  P  Btwn  <. Q ,  x >. ) )  ->  x  Colinear  <. P ,  S >. )
173172expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  Q  Btwn  <. S ,  P >. )  ->  ( P  Btwn  <. Q ,  x >.  ->  x  Colinear  <. P ,  S >. ) )
17494adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  P  =/=  Q )
175 simprl 794 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  Q  Btwn  <. S ,  P >. )
1761, 4, 2, 3, 175btwncomand 32122 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  Q  Btwn  <. P ,  S >. )
177 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  Q  Btwn  <.
x ,  P >. )
1781, 4, 8, 3, 177btwncomand 32122 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  Q  Btwn  <. P ,  x >. )
179 btwnconn1 32208 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N ) )  /\  ( S  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) ) )  ->  ( ( P  =/=  Q  /\  Q  Btwn  <. P ,  S >.  /\  Q  Btwn  <. P ,  x >. )  ->  ( S  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  S >. ) ) )
1801, 3, 4, 2, 8, 179syl122anc 1335 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  (
( P  =/=  Q  /\  Q  Btwn  <. P ,  S >.  /\  Q  Btwn  <. P ,  x >. )  ->  ( S  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  S >. ) ) )
181180adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  ( ( P  =/=  Q  /\  Q  Btwn  <. P ,  S >.  /\  Q  Btwn  <. P ,  x >. )  ->  ( S  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  S >. ) ) )
182174, 176, 178, 181mp3and 1427 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  ( S  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  S >. ) )
18319adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  ( ( S  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  S >. )  ->  x  Colinear  <. P ,  S >. ) )
184182, 183mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  Q  Btwn  <.
x ,  P >. ) )  ->  x  Colinear  <. P ,  S >. )
185184expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  Q  Btwn  <. S ,  P >. )  ->  ( Q  Btwn  <. x ,  P >.  ->  x  Colinear  <. P ,  S >. ) )
186163, 173, 1853jaod 1392 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  Q  Btwn  <. S ,  P >. )  ->  ( (
x  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  x >.  \/  Q  Btwn  <. x ,  P >. )  ->  x  Colinear  <. P ,  S >. ) )
187156, 186sylbid 230 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  Q  Btwn  <. S ,  P >. )  ->  ( x  Colinear  <. P ,  Q >.  ->  x  Colinear  <. P ,  S >. ) )
18842adantr 481 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  Q  Btwn  <. S ,  P >. )  ->  ( x  Colinear  <. P ,  S >.  <->  (
x  Btwn  <. P ,  S >.  \/  P  Btwn  <. S ,  x >.  \/  S  Btwn  <. x ,  P >. ) ) )
189 simprl 794 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  x  Btwn  <. P ,  S >. ) )  ->  Q  Btwn  <. S ,  P >. )
1901, 4, 2, 3, 189btwncomand 32122 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  x  Btwn  <. P ,  S >. ) )  ->  Q  Btwn  <. P ,  S >. )
191 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  x  Btwn  <. P ,  S >. ) )  ->  x  Btwn  <. P ,  S >. )
192 btwnconn3 32210 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N ) )  /\  ( x  e.  ( EE `  N )  /\  S  e.  ( EE `  N ) ) )  ->  ( ( Q 
Btwn  <. P ,  S >.  /\  x  Btwn  <. P ,  S >. )  ->  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) )
1931, 3, 4, 8, 2, 192syl122anc 1335 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N
) )  ->  (
( Q  Btwn  <. P ,  S >.  /\  x  Btwn  <. P ,  S >. )  ->  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) )
194193adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  x  Btwn  <. P ,  S >. ) )  ->  ( ( Q  Btwn  <. P ,  S >.  /\  x  Btwn  <. P ,  S >. )  ->  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) ) )
195190, 191, 194mp2and 715 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  x  Btwn  <. P ,  S >. ) )  ->  ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. ) )
19677adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  x  Btwn  <. P ,  S >. ) )  ->  ( ( Q  Btwn  <. P ,  x >.  \/  x  Btwn  <. P ,  Q >. )  ->  x  Colinear  <. P ,  Q >. ) )
197195, 196mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  x  Btwn  <. P ,  S >. ) )  ->  x  Colinear  <. P ,  Q >. )
198197expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  Q  Btwn  <. S ,  P >. )  ->  ( x  Btwn  <. P ,  S >.  ->  x  Colinear  <. P ,  Q >. ) )
199 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  P  Btwn  <. S ,  x >. ) )  ->  Q  Btwn  <. S ,  P >. )
200 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  P  Btwn  <. S ,  x >. ) )  ->  P  Btwn  <. S ,  x >. )
2011, 2, 4, 3, 8, 199, 200btwnexch3and 32128 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  P  Btwn  <. S ,  x >. ) )  ->  P  Btwn  <. Q ,  x >. )
20263adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  P  Btwn  <. S ,  x >. ) )  ->  ( P  Btwn  <. Q ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
203201, 202mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  P  Btwn  <. S ,  x >. ) )  ->  x  Colinear  <. P ,  Q >. )
204203expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  Q  Btwn  <. S ,  P >. )  ->  ( P  Btwn  <. S ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
205 simprl 794 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  Q  Btwn  <. S ,  P >. )
2061, 4, 2, 3, 205btwncomand 32122 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  Q  Btwn  <. P ,  S >. )
207 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  S  Btwn  <.
x ,  P >. )
2081, 2, 8, 3, 207btwncomand 32122 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  S  Btwn  <. P ,  x >. )
2091, 3, 4, 2, 8, 206, 208btwnexchand 32133 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  Q  Btwn  <. P ,  x >. )
21076adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  ( Q  Btwn  <. P ,  x >.  ->  x  Colinear  <. P ,  Q >. ) )
211209, 210mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( Q  Btwn  <. S ,  P >.  /\  S  Btwn  <.
x ,  P >. ) )  ->  x  Colinear  <. P ,  Q >. )
212211expr 643 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  Q  Btwn  <. S ,  P >. )  ->  ( S  Btwn  <. x ,  P >.  ->  x  Colinear  <. P ,  Q >. ) )
213198, 204, 2123jaod 1392 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  Q  Btwn  <. S ,  P >. )  ->  ( (
x  Btwn  <. P ,  S >.  \/  P  Btwn  <. S ,  x >.  \/  S  Btwn  <. x ,  P >. )  ->  x  Colinear  <. P ,  Q >. ) )
214188, 213sylbid 230 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  Q  Btwn  <. S ,  P >. )  ->  ( x  Colinear  <. P ,  S >.  ->  x  Colinear  <. P ,  Q >. ) )
215187, 214impbid 202 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  Q  Btwn  <. S ,  P >. )  ->  ( x  Colinear  <. P ,  Q >.  <->  x  Colinear  <. P ,  S >. ) )
21683, 155, 2153jaodan 1394 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  Btwn  <. P ,  Q >.  \/  P  Btwn  <. Q ,  S >.  \/  Q  Btwn  <. S ,  P >. ) )  -> 
( x  Colinear  <. P ,  Q >. 
<->  x  Colinear  <. P ,  S >. ) )
2177, 216syldan 487 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  S  Colinear  <. P ,  Q >. )  ->  ( x  Colinear  <. P ,  Q >.  <->  x  Colinear  <. P ,  S >. ) )
218217adantrl 752 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  x  e.  ( EE `  N ) )  /\  ( S  e.  ( EE `  N )  /\  S  Colinear  <. P ,  Q >. ) )  ->  (
x  Colinear  <. P ,  Q >.  <-> 
x  Colinear  <. P ,  S >. ) )
219218an32s 846 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N
)  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  /\  ( S  e.  ( EE `  N )  /\  S  Colinear  <. P ,  Q >. ) )  /\  x  e.  ( EE `  N
) )  ->  (
x  Colinear  <. P ,  Q >.  <-> 
x  Colinear  <. P ,  S >. ) )
220219rabbidva 3188 . . 3  |-  ( ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q
)  /\  ( S  e.  ( EE `  N
)  /\  P  =/=  S ) )  /\  ( S  e.  ( EE `  N )  /\  S  Colinear  <. P ,  Q >. ) )  ->  { x  e.  ( EE `  N
)  |  x  Colinear  <. P ,  Q >. }  =  { x  e.  ( EE `  N )  |  x  Colinear  <. P ,  S >. } )
221220ex 450 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  -> 
( ( S  e.  ( EE `  N
)  /\  S  Colinear  <. P ,  Q >. )  ->  { x  e.  ( EE `  N
)  |  x  Colinear  <. P ,  Q >. }  =  { x  e.  ( EE `  N )  |  x  Colinear  <. P ,  S >. } ) )
222 fvline2 32253 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q ) )  -> 
( PLine Q )  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. P ,  Q >. } )
2232223adant3 1081 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  -> 
( PLine Q )  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. P ,  Q >. } )
224223eleq2d 2687 . . 3  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  -> 
( S  e.  ( PLine Q )  <->  S  e.  { x  e.  ( EE
`  N )  |  x  Colinear  <. P ,  Q >. } ) )
225 breq1 4656 . . . 4  |-  ( x  =  S  ->  (
x  Colinear  <. P ,  Q >.  <-> 
S  Colinear  <. P ,  Q >. ) )
226225elrab 3363 . . 3  |-  ( S  e.  { x  e.  ( EE `  N
)  |  x  Colinear  <. P ,  Q >. }  <->  ( S  e.  ( EE `  N
)  /\  S  Colinear  <. P ,  Q >. ) )
227224, 226syl6bb 276 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  -> 
( S  e.  ( PLine Q )  <->  ( S  e.  ( EE `  N
)  /\  S  Colinear  <. P ,  Q >. ) ) )
228 simp1 1061 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  ->  N  e.  NN )
229 simp21 1094 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  ->  P  e.  ( EE `  N ) )
230 simp3l 1089 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  ->  S  e.  ( EE `  N ) )
231 simp3r 1090 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  ->  P  =/=  S )
232 fvline2 32253 . . . 4  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  S  e.  ( EE `  N )  /\  P  =/=  S ) )  -> 
( PLine S )  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. P ,  S >. } )
233228, 229, 230, 231, 232syl13anc 1328 . . 3  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  -> 
( PLine S )  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. P ,  S >. } )
234223, 233eqeq12d 2637 . 2  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  -> 
( ( PLine Q
)  =  ( PLine S )  <->  { x  e.  ( EE `  N
)  |  x  Colinear  <. P ,  Q >. }  =  { x  e.  ( EE `  N )  |  x  Colinear  <. P ,  S >. } ) )
235221, 227, 2343imtr4d 283 1  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  Q  e.  ( EE `  N )  /\  P  =/=  Q )  /\  ( S  e.  ( EE `  N )  /\  P  =/=  S ) )  -> 
( S  e.  ( PLine Q )  -> 
( PLine Q )  =  ( PLine S
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   NNcn 11020   EEcee 25768    Btwn cbtwn 25769    Colinear ccolin 32144  Linecline2 32241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ee 25771  df-btwn 25772  df-cgr 25773  df-ofs 32090  df-colinear 32146  df-ifs 32147  df-cgr3 32148  df-fs 32149  df-line2 32244
This theorem is referenced by:  linethru  32260
  Copyright terms: Public domain W3C validator