Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpnel2N Structured version   Visualization version   Unicode version

Theorem lshpnel2N 34272
Description: Condition that determines a hyperplane. (Contributed by NM, 3-Oct-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lshpnel2.v  |-  V  =  ( Base `  W
)
lshpnel2.s  |-  S  =  ( LSubSp `  W )
lshpnel2.n  |-  N  =  ( LSpan `  W )
lshpnel2.p  |-  .(+)  =  (
LSSum `  W )
lshpnel2.h  |-  H  =  (LSHyp `  W )
lshpnel2.w  |-  ( ph  ->  W  e.  LVec )
lshpnel2.u  |-  ( ph  ->  U  e.  S )
lshpnel2.t  |-  ( ph  ->  U  =/=  V )
lshpnel2.x  |-  ( ph  ->  X  e.  V )
lshpnel2.e  |-  ( ph  ->  -.  X  e.  U
)
Assertion
Ref Expression
lshpnel2N  |-  ( ph  ->  ( U  e.  H  <->  ( U  .(+)  ( N `  { X } ) )  =  V ) )

Proof of Theorem lshpnel2N
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 lshpnel2.e . . . 4  |-  ( ph  ->  -.  X  e.  U
)
21adantr 481 . . 3  |-  ( (
ph  /\  U  e.  H )  ->  -.  X  e.  U )
3 lshpnel2.v . . . 4  |-  V  =  ( Base `  W
)
4 lshpnel2.n . . . 4  |-  N  =  ( LSpan `  W )
5 lshpnel2.p . . . 4  |-  .(+)  =  (
LSSum `  W )
6 lshpnel2.h . . . 4  |-  H  =  (LSHyp `  W )
7 lshpnel2.w . . . . 5  |-  ( ph  ->  W  e.  LVec )
87adantr 481 . . . 4  |-  ( (
ph  /\  U  e.  H )  ->  W  e.  LVec )
9 simpr 477 . . . 4  |-  ( (
ph  /\  U  e.  H )  ->  U  e.  H )
10 lshpnel2.x . . . . 5  |-  ( ph  ->  X  e.  V )
1110adantr 481 . . . 4  |-  ( (
ph  /\  U  e.  H )  ->  X  e.  V )
123, 4, 5, 6, 8, 9, 11lshpnelb 34271 . . 3  |-  ( (
ph  /\  U  e.  H )  ->  ( -.  X  e.  U  <->  ( U  .(+)  ( N `  { X } ) )  =  V ) )
132, 12mpbid 222 . 2  |-  ( (
ph  /\  U  e.  H )  ->  ( U  .(+)  ( N `  { X } ) )  =  V )
14 lshpnel2.u . . . 4  |-  ( ph  ->  U  e.  S )
1514adantr 481 . . 3  |-  ( (
ph  /\  ( U  .(+) 
( N `  { X } ) )  =  V )  ->  U  e.  S )
16 lshpnel2.t . . . 4  |-  ( ph  ->  U  =/=  V )
1716adantr 481 . . 3  |-  ( (
ph  /\  ( U  .(+) 
( N `  { X } ) )  =  V )  ->  U  =/=  V )
1810adantr 481 . . . 4  |-  ( (
ph  /\  ( U  .(+) 
( N `  { X } ) )  =  V )  ->  X  e.  V )
19 lveclmod 19106 . . . . . . . . . . 11  |-  ( W  e.  LVec  ->  W  e. 
LMod )
207, 19syl 17 . . . . . . . . . 10  |-  ( ph  ->  W  e.  LMod )
21 lshpnel2.s . . . . . . . . . . 11  |-  S  =  ( LSubSp `  W )
2221, 4lspid 18982 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( N `  U )  =  U )
2320, 14, 22syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( N `  U
)  =  U )
2423uneq1d 3766 . . . . . . . 8  |-  ( ph  ->  ( ( N `  U )  u.  ( N `  { X } ) )  =  ( U  u.  ( N `  { X } ) ) )
2524fveq2d 6195 . . . . . . 7  |-  ( ph  ->  ( N `  (
( N `  U
)  u.  ( N `
 { X }
) ) )  =  ( N `  ( U  u.  ( N `  { X } ) ) ) )
263, 21lssss 18937 . . . . . . . . 9  |-  ( U  e.  S  ->  U  C_  V )
2714, 26syl 17 . . . . . . . 8  |-  ( ph  ->  U  C_  V )
2810snssd 4340 . . . . . . . 8  |-  ( ph  ->  { X }  C_  V )
293, 4lspun 18987 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U  C_  V  /\  { X }  C_  V )  -> 
( N `  ( U  u.  { X } ) )  =  ( N `  (
( N `  U
)  u.  ( N `
 { X }
) ) ) )
3020, 27, 28, 29syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( N `  ( U  u.  { X } ) )  =  ( N `  (
( N `  U
)  u.  ( N `
 { X }
) ) ) )
313, 21, 4lspsncl 18977 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  S
)
3220, 10, 31syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( N `  { X } )  e.  S
)
3321, 4, 5lsmsp 19086 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  ( N `  { X } )  e.  S
)  ->  ( U  .(+) 
( N `  { X } ) )  =  ( N `  ( U  u.  ( N `  { X } ) ) ) )
3420, 14, 32, 33syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( U  .(+)  ( N `
 { X }
) )  =  ( N `  ( U  u.  ( N `  { X } ) ) ) )
3525, 30, 343eqtr4rd 2667 . . . . . 6  |-  ( ph  ->  ( U  .(+)  ( N `
 { X }
) )  =  ( N `  ( U  u.  { X }
) ) )
3635eqeq1d 2624 . . . . 5  |-  ( ph  ->  ( ( U  .(+)  ( N `  { X } ) )  =  V  <->  ( N `  ( U  u.  { X } ) )  =  V ) )
3736biimpa 501 . . . 4  |-  ( (
ph  /\  ( U  .(+) 
( N `  { X } ) )  =  V )  ->  ( N `  ( U  u.  { X } ) )  =  V )
38 sneq 4187 . . . . . . . 8  |-  ( v  =  X  ->  { v }  =  { X } )
3938uneq2d 3767 . . . . . . 7  |-  ( v  =  X  ->  ( U  u.  { v } )  =  ( U  u.  { X } ) )
4039fveq2d 6195 . . . . . 6  |-  ( v  =  X  ->  ( N `  ( U  u.  { v } ) )  =  ( N `
 ( U  u.  { X } ) ) )
4140eqeq1d 2624 . . . . 5  |-  ( v  =  X  ->  (
( N `  ( U  u.  { v } ) )  =  V  <->  ( N `  ( U  u.  { X } ) )  =  V ) )
4241rspcev 3309 . . . 4  |-  ( ( X  e.  V  /\  ( N `  ( U  u.  { X }
) )  =  V )  ->  E. v  e.  V  ( N `  ( U  u.  {
v } ) )  =  V )
4318, 37, 42syl2anc 693 . . 3  |-  ( (
ph  /\  ( U  .(+) 
( N `  { X } ) )  =  V )  ->  E. v  e.  V  ( N `  ( U  u.  {
v } ) )  =  V )
447adantr 481 . . . 4  |-  ( (
ph  /\  ( U  .(+) 
( N `  { X } ) )  =  V )  ->  W  e.  LVec )
453, 4, 21, 6islshp 34266 . . . 4  |-  ( W  e.  LVec  ->  ( U  e.  H  <->  ( U  e.  S  /\  U  =/= 
V  /\  E. v  e.  V  ( N `  ( U  u.  {
v } ) )  =  V ) ) )
4644, 45syl 17 . . 3  |-  ( (
ph  /\  ( U  .(+) 
( N `  { X } ) )  =  V )  ->  ( U  e.  H  <->  ( U  e.  S  /\  U  =/= 
V  /\  E. v  e.  V  ( N `  ( U  u.  {
v } ) )  =  V ) ) )
4715, 17, 43, 46mpbir3and 1245 . 2  |-  ( (
ph  /\  ( U  .(+) 
( N `  { X } ) )  =  V )  ->  U  e.  H )
4813, 47impbida 877 1  |-  ( ph  ->  ( U  e.  H  <->  ( U  .(+)  ( N `  { X } ) )  =  V ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    u. cun 3572    C_ wss 3574   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857   LSSumclsm 18049   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971   LVecclvec 19102  LSHypclsh 34262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lshyp 34264
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator